Skip to main content
Log in

Controlled-Phase-Shift Gate Realization and Quantum Entanglement Control for the Charge Qubits Coupled by Variable Capacitor

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

By virtue of the canonical quantization method, the Hamilton operator for the charge qubits coupled by the variable capacitor is given. Based on this system, the realization scheme of the controlled-phase-shift gate is proposed. Meanwhile the quantum entanglement phenomena exiting in the system are discussed. An interesting conclusion is obtained, i.e., if one desires to change the quantum entanglement, the coupling capacitance should be considered first, but it is also a good choice to tune symmetric and asymmetric combination of two external magnetic fluxes respectively through the two loops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Liang, B.L., Wang, J.S.: Quantum Theory and Quantum Computation of Mesoscopic Circuit. Science Press, Beijing (2018)

    Google Scholar 

  2. Vandersypen, L.M.K., Steffen, M., Breyta, G., Yannoni, C.S., Sherwood, M.H., Chuang, I.L.: Experimental Realization of Shor’s Quantum Factoring Algorithm Using Nuclear Magnetic Resonance. Nature 414, 883 (2001)

    Article  ADS  Google Scholar 

  3. Gulde, S., Riebe, M., Lancaster, G.P.T., Becher, C., Eschner, J., Häffner, H., Schmidt-Kaler, F., Chuang, I.L., Blatt: Implementation of the Deutsch–Jozsa Algorithm on an Ion-trap Quantum Computer. Nature 421, 48 (2003)

    Article  ADS  Google Scholar 

  4. Turchette, Q.A., Hood, C.J., Lange, W., Mabuchi, H., Kimble, H.J.: Measurement of Conditional Phase Shifts for Quantum Logic. Phys. Rev. Lett. 75, 4710 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  5. Li, T., Lai, L.M., Liang, D.F., Fei, S.M., Wang, Z.X.: Entanglement Witnesses Based on Symmetric Informationally Complete Measurements. Int. J. Theor. Phys. 59, 3549 (2020)

    Article  MathSciNet  Google Scholar 

  6. Tsuruoka, T., Su, J., Terabe, K.: A Voltage-Controlled Oscillator Using Variable Capacitors with a Thin Dielectric Electrolyte Film. Appl. Electron. Mater. 2, 2788 (2020)

    Article  Google Scholar 

  7. Li, H.K., Li, K.M., Dong, H., Guo, Q.J., Liu, W.X., Wang, Z., Wang, H.H., Zheng, D.N.: Tunable coupling between Xmon qubit and coplanar waveguide resonator. Chin. Phys. B 28, 080305 (2019)

    Article  ADS  Google Scholar 

  8. Liang, B.L., Wang, J.S., Meng, X.G., Yang, Q.Y.: Decoherence Dynamics of A Flux Qubit Respectively Coupled to A Boson Bath and A Spin Bath. Int. J. Mod. Phys. B 27, 1350134 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  9. Zhang, Z.T.: Distinguishing Majorana Bound States and Andreev Bound States with Microwave Spectra. J. Phys.: Condens. Matter 30, 145402 (2018)

    ADS  Google Scholar 

  10. Zhang, Z.T., Mei, F., Meng, X.G., Liang, B.L., Yang, Z.S.: Effects of decoherence on diabatic errors in Majorana braiding. Phys. Rev. A 100, 012324 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  11. Arute, F., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574, 505 (2019)

    Article  ADS  Google Scholar 

  12. Zhong, H.S., et al.: Quantum Computational Advantage Using Photons. Science 370, 1460 (2020)

    Article  ADS  Google Scholar 

  13. Makhlin, Y., Schön, G., Shnirman, A.: Josephson-junction qubits with controlled couplings. Nature 398, 305 (1999)

    Article  ADS  Google Scholar 

  14. Berkley, A.J., Xu, H., Gubrud, M.A., Ramos, R.C., et al.: Entangled Macroscopic Quantum States in Two Superconducting Qubits. Science 300, 1548 (2003)

    Article  ADS  Google Scholar 

  15. Wei, L.F., Liu, Y.X., Nori, F.: Generation and Control of Greenberger-Horne-Zeilinger Entanglement in Superconducting Circuits. Phys. Rev. Lett. 96, 246803 (2006)

    Article  ADS  Google Scholar 

  16. You, J.Q., Lam, C.H., Zheng, H.Z.: Superconducting Charge Qubits: The Roles of Self and Mutual Inductances. Phys. Rev. B 63, 180501 (2001)

    Article  ADS  Google Scholar 

  17. Burkard, G., Loss, D.: Physical Optimization of Quantum Error Correction Circuits. Phys. Rev. B 60, 11404 (1999)

    Article  ADS  Google Scholar 

  18. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  19. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics. Addison-Wesley (1965)

  20. Wootters, W.K.: Entanglement of Formation of an Arbitrary State of Two Qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  21. Kim, M.D., Cho, S.Y.: Entanglement and Bell states in Superconducting Flux Qubits. Phys. Rev. B 75, 134514 (2007)

    Article  ADS  Google Scholar 

  22. Tinkham, M.: Introduction to Superconductivity. McGraw-Hill, New York (1996)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11147009 and 11244005) and the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2020MA085 and ZR2020MF113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. L. Liang.

Ethics declarations

Conflict of Interests

We have no potential conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, B.L., Wu, M.Y., Wang, J.S. et al. Controlled-Phase-Shift Gate Realization and Quantum Entanglement Control for the Charge Qubits Coupled by Variable Capacitor. Int J Theor Phys 61, 79 (2022). https://doi.org/10.1007/s10773-022-04981-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-04981-7

Keywords

Navigation