Skip to main content
Log in

Asymmetric Cyclic Controlled Quantum Teleportation by Using Nine-Qubit Entangled State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The paper proposes a novel protocol of asymmetric cyclic controlled quantum teleportation, using a maximally nine-qubit entangled state as the quantum channel. In this protocol, communicants can simultaneously transmit two arbitrary two-qubit entangled states and an arbitrary single-qubit state. That is to say, Alice can transmit an arbitrary two-qubit state to Bob, Bob can transmit an arbitrary two-qubit state to Charlie, and Charlie can send an arbitrary single-qubit state to Alice via the control of David. Finally, the paper also analyzes and discusses the fidelity of the protocol in five different noise environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  2. Ben-Or, M., Horodecki, M., Leung, D.W., et al.: The Universal Composable Security of Quantum Key Distribution[C]//Theory of Cryptography Conference, pp. 386–406. Springer, Berlin (2005)

    MATH  Google Scholar 

  3. Curty, M., Moroder, T., Ma, X., Lütkenhaus, N.: Non-Poissonian statistics from Poissonian light sources with application to passive decoy state quantum key distribution[J]. Opt. Lett. 34(20), 3238–3240 (2009)

    Article  ADS  Google Scholar 

  4. Xiao, L., Long, G.L., Deng, F.G., et al.: Efficient multiparty quantum-secret-sharing schemes[J]. Phys. Rev. A. 69(5), 052307 (2004)

    Article  ADS  Google Scholar 

  5. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack[J]. Phys. Rev. A. 72(4), 044302 (2005)

    Article  ADS  Google Scholar 

  6. Zhang Z J, Man Z X. Multiparty Quantum Secret Sharing Based on Entanglement Swapping[J]. arXiv preprint quant-ph/0406103, 2004

  7. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation[J]. Phys. Rev. Lett. 87(7), 077902 (2001)

    Article  ADS  Google Scholar 

  8. Leung, D.W., Shor, P.W.: Oblivious remote state preparation[J]. Phys. Rev. Lett. 90(12), 127905 (2003)

    Article  ADS  Google Scholar 

  9. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles[J]. Phys. Rev. A. 74(5), 054302 (2006)

    Article  ADS  Google Scholar 

  10. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad[J]. Phys. Rev. A. 69(5), 052319 (2004)

    Article  ADS  Google Scholar 

  11. Li, Y., Zhou, R.-G., Xu, R., Luo, J., Jiang, S.-X.: A quantum mechanics-based framework for EEG signal feature extraction and classification. IEEE Trans. Emerg. Top. Comput. (2020). https://doi.org/10.1109/TETC.2020.3000734

  12. Li, Y., Zhou, R.-G., Xu, R., Luo, J., Hu, W.: A quantum deep convolutional neural network for image recognition. Quantum Sci. Technol. 5(4), 044003 (2020)

    Article  ADS  Google Scholar 

  13. Li, Y., Zhou, R.-G., Xu, R., Hu, W., Fan, P.: Quantum algorithm for the nonlinear dimensionality reduction with arbitrary kernel. Quantum Sci. Technol. 6(1), 014001 (2020)

    Article  ADS  Google Scholar 

  14. Tittel, W., Brendel, J., Gisin, B., Herzog, T., Zbinden, H., Gisin, N.: Experimental demonstration of quantum correlations over more than 10 km[J]. Phys. Rev. A. 57(5), 3229–3232 (1998)

    Article  ADS  Google Scholar 

  15. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation[J]. Nature. 390(6660), 575–579 (1997)

    Article  ADS  Google Scholar 

  16. Krauter, H., Salart, D., Muschik, C.A., Petersen, J.M., Shen, H., Fernholz, T., Polzik, E.S.: Deterministic quantum teleportation between distant atomic objects[J]. Nat. Phys. 9(7), 400–404 (2013)

    Article  Google Scholar 

  17. Takeda, S., Mizuta, T., Fuwa, M., van Loock, P., Furusawa, A.: Deterministic quantum teleportation of photonic quantum bits by a hybrid technique[J]. Nature. 500(7462), 315–318 (2013)

    Article  ADS  Google Scholar 

  18. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement[J]. Phys. Rev. A. 58(6), 4394–4400 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  19. Huelga, S.F., Plenio, M.B., Vaccaro, J.A.: Remote control of restricted sets of operations: teleportation of angles[J]. Phys. Rev. A. 65(4), 042316 (2002)

    Article  ADS  Google Scholar 

  20. Yang, C.P., Chu, S.I., Han, S.: Efficient many-party controlled teleportation of multiqubit quantum information via entanglement[J]. Phys. Rev. A. 70(2), 022329 (2004)

    Article  ADS  Google Scholar 

  21. Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state[J]. Int. J. Theor. Phys. 52(6), 1740–1744 (2013)

    Article  MathSciNet  Google Scholar 

  22. Duan, Y.J., Zha, X.W.: Bidirectional quantum controlled teleportation via a six-qubit entangled state[J]. Int. J. Theor. Phys. 53(11), 3780–3786 (2014)

    Article  Google Scholar 

  23. Duan, Y.J., Zha, X.W., Sun, X.M., Xia, J.F.: Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state[J]. Int. J. Theor. Phys. 53(8), 2697–2707 (2014)

    Article  Google Scholar 

  24. Zhang, D., Zha, X.W., Duan, Y.J.: Bidirectional and asymmetric quantum controlled teleportation[J]. Int. J. Theor. Phys. 54(5), 1711–1719 (2015)

    Article  Google Scholar 

  25. Yang, Y.Q., Zha, X.W., Yu, Y.: Asymmetric bidirectional controlled teleportation via seven-qubit cluster state[J]. Int. J. Theor. Phys. 55(10), 4197–4204 (2016)

    Article  Google Scholar 

  26. Choudhury, B.S., Samanta, S.: Asymmetric bidirectional 3⇔ 2 qubit teleportation protocol between Alice and bob via 9-qubit cluster state[J]. Int. J. Theor. Phys. 56(10), 3285–3296 (2017)

    Article  MathSciNet  Google Scholar 

  27. Chen, Y.X., Du, J., Liu, S.Y., et al.: Cyclic quantum teleportation. Quantum. Inf. Process. 16, 201 (2017). https://doi.org/10.1007/s11128-017-1648-1

  28. Sang, Zw.: Cyclic controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 57, 3835–3838 (2018). https://doi.org/10.1007/s10773-018-3895-z

  29. Shao, Z.L., Long, Y.: Circular controlled quantum teleportation by a genuine seven-qubit entangled state[J]. Int. J. Theor. Phys. 58(13), 1957 (2019)

    Article  MathSciNet  Google Scholar 

  30. Li, Yh., Qiao, Y., Sang, Mh. et al.: Controlled cyclic quantum teleportation of an arbitrary two-qubit entangled state by using a ten-qubit entangled state. Int. J. Theor. Phys. 58, 1541–1545 (2019). https://doi.org/10.1007/s10773-019-04041-7

  31. Sun, S., Li, L., Zhang, H.: Quantum cyclic controlled teleportation of unknown states with arbitrary number of qubits by using seven-qubit entangled channel[J]. Int. J. Theor. Phys. 59(13), 1017 (2020)

    Article  MathSciNet  Google Scholar 

  32. Xian-Ting, L.: Classical information capacities of some single qubit quantum noisy channels[J]. Commun. Theor. Phys. 39(5), 537–542 (2003)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the Shanghai Science and Technology Project in 2020 under Grant No.20040501500.

Author information

Authors and Affiliations

Authors

Contributions

Chengpu Ling, Ri-Gui Zhou conceived the theory and designed the protocol. Chengpu Ling wrote the paper and fidelity analysis.

Corresponding author

Correspondence to Chengpu Ling.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In order not to affect the structure of the paper, all possible measurement results and corresponding unitary operations are shown in the two tables in the Appendix.

Table 1 All measurement results and corresponding collapsed states
Table 2 All measurement results and corresponding unitary operations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, RG., Ling, C. Asymmetric Cyclic Controlled Quantum Teleportation by Using Nine-Qubit Entangled State. Int J Theor Phys 60, 3435–3459 (2021). https://doi.org/10.1007/s10773-021-04825-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04825-w

Keywords

Navigation