Skip to main content
Log in

Entanglement of Photon-Subtracted Two-Mode Squeezed Thermal State and Its Decoherence in Thermal Environments

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Using a non-Gaussian operation—photon subtraction from two-mode squeezed thermal state (PS-TMSTS), we construct a kind of entangled state. A Jacobi polynomial is found to be related to the normalization factor. The negativity of Wigner function (WF) is used to discuss its nonclassicality. The investigated entanglement properties turn out that the symmetrical PS-TMSTS may be more effective than the non-symmetric for quantum teleportation. Then the time evolution of WF is used to examine the decoherence effect, which indicates that the characteristic time of single PS-TMSTS depends not only on the average photon number of environment, but also on the average photon number of thermal state and the squeezing parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bouwmeester, D., et al.: The Physics of Quantum Information. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Opatrný, T., Kurizki, G., Welsch, D.-G.: Phys. Rev. A 61, 032302 (2000)

    Article  ADS  Google Scholar 

  4. Kim, M.S.: J. Phys. B 41, 133001 (2008), 18 pp.

    Article  ADS  Google Scholar 

  5. Olivares, S., Paris, M.G.A., Bonifacio, R.: Phys. Rev. A 67, 032314 (2003)

    Article  ADS  Google Scholar 

  6. Kitagawa, A., Takeoka, M., Sasaki, M., Chefles, A.: Phys. Rev. A 73, 042310 (2006)

    Article  ADS  Google Scholar 

  7. Ourjoumtsev, A., Dantan, A., Tualle-Brouri, R., Grangier, P.: Phys. Rev. Lett. 98, 030502 (2007)

    Article  ADS  Google Scholar 

  8. Ourjoumtsev, A., Tualle-Brouri, R., Grangier, P.: Phys. Rev. Lett. 96, 213601 (2006)

    Article  ADS  Google Scholar 

  9. Hu, L.Y., Xu, X.X., Fan, H.Y.: J. Opt. Soc. Am. B 27, 286–299 (2010)

    Article  Google Scholar 

  10. Cochrane, P.T., Ralph, T.C., Milburn, G.J.: Phys. Rev. A 65, 062306 (2002)

    Article  ADS  Google Scholar 

  11. Bartlett, S.D., Sanders, B.C.: Phys. Rev. A 65, 042304 (2002)

    Article  ADS  Google Scholar 

  12. Sasaki, M., Suzuki, S.: Phys. Rev. A 73, 043807 (2006)

    Article  ADS  Google Scholar 

  13. Invernizzi, C., Olivares, S., Paris, M.G.A., Banaszek, K.: Phys. Rev. A 72, 042105 (2005)

    Article  ADS  Google Scholar 

  14. Lee, S.Y., Ji, S.W., Kim, H.J., Nha, H.: Phys. Rev. A 84, 012302 (2011)

    Article  ADS  Google Scholar 

  15. Hu, L.Y., Zhang, Z.M.: J. Opt. Soc. Am. B 29, 529–537 (2012)

    Article  ADS  Google Scholar 

  16. Barnett, S.M., Radmore, P.M.: Methods in Theoretical Quantum Optics. Clarendon, Oxford (1997)

    Google Scholar 

  17. Fan, H.Y., Lu, H.L., Fan, Y.: Ann. Phys. 321, 480 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Fan, H.Y., Zaidi, H.R., Klauder, J.R.: Phys. Rev. D 35, 1831 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  19. Puri, R.R.: Mathematical Methods of Quantum Optics. Springer, Berlin (2001). Appendix A

    Book  MATH  Google Scholar 

  20. Fan, H.Y., Hu, L.Y.: Opt. Lett. 33, 443 (2008)

    Article  ADS  Google Scholar 

  21. Hu, L.Y., Jia, F., Zhang, Z.M.: J. Opt. Soc. Am. B 29, 1456–1464 (2012)

    Article  ADS  Google Scholar 

  22. Hu, L.Y., Fan, H.Y., Zhang, Z.M.: Chin. Phys. B 22, 034202 (2013)

    Article  ADS  Google Scholar 

  23. Zhang, Z.X., Fan, H.Y.: Phys. Lett. A 174, 206 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  24. Browne, D.E., Eisert, J., Scheel, S., Plenio, M.B.: Phys. Rev. A 67, 062320 (2003)

    Article  ADS  Google Scholar 

  25. García-Patrón, R., Fiurášek, J., Cerf, N.J., Wenger, J., Tualle-Brouri, R., Grangier, P.: Phys. Rev. Lett. 93, 130409 (2004)

    Article  ADS  Google Scholar 

  26. Duan, L.M., Giedke, G., Cirac, J.I., Zoller, P.: Phys. Rev. Lett. 84, 2722 (2000)

    Article  ADS  Google Scholar 

  27. Simon, R.: Phys. Rev. Lett. 84, 2726 (2000)

    Article  ADS  Google Scholar 

  28. Marian, P., Marian, T.A.: Phys. Rev. A 74, 042306 (2006)

    Article  ADS  Google Scholar 

  29. Braunstein, S.L., Kimble, H.J.: Phys. Rev. Lett. 80, 869 (1998)

    Article  ADS  Google Scholar 

  30. Gardiner, C., Zoller, P.: Quantum Noise. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  31. Hu, L.Y., Fan, H.Y.: Opt. Commun. 282, 4379 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grant no. 11264018), and the Natural Science Foundation of Jiangxi Province of China (No. 20132BAB212006) as well as the Sponsored Program for Cultivating Youths of Outstanding Ability in Jiangxi Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Yun Hu.

Appendices

Appendix A: Derivation of Eq. (16)

Substituting Eq. (15) into Eq. (14) and using Eq. (11), we have

$$\begin{aligned} W ( \alpha,\beta ) =&\tilde{A}_{1}M_{m,n}^{-1}\int \frac {d^{2}z_{1}d^{2}z_{2}}{\pi^{2}}\vert z_{1}\vert ^{2m}\vert z_{2}\vert ^{2n} \\ &{} \times\exp \bigl[ \tilde{A}_{2} \bigl( z_{1}^{\ast}z_{2}^{\ast }+z_{1}z_{2} \bigr) -\tilde{A}_{3} \bigl( \vert z_{1}\vert ^{2}+\vert z_{2}\vert ^{2} \bigr) \bigr] \langle z_{1},z_{2}|\Delta_{a} \bigl( \alpha, \alpha^{\ast} \bigr) \Delta _{b} \bigl( \beta, \beta^{\ast} \bigr) |z_{1},z_{2}\rangle \\ =&\tilde{A}_{1}M_{m,n}^{-1}e^{-2 ( \vert \alpha \vert ^{2}+\vert \beta \vert ^{2} ) } \frac{\partial ^{2m+2n}}{\partial\tau^{m}\partial s^{m}\partial\tau^{\prime n}\partial s^{\prime n}}\int\frac{d^{2}z_{1}d^{2}z_{2}}{\pi^{4}}e^{- ( \tilde {A}_{3}+2 ) \vert z_{1}\vert ^{2}- ( \tilde {A}_{3}+2 ) \vert z_{2}\vert ^{2}} \\ &{} \times e^{ ( s+2\alpha^{\ast}+\tilde{A}_{2}z_{2} ) z_{1}+ ( \tau+2\alpha+\tilde{A}_{2}z_{2}^{\ast} ) z_{1}^{\ast}+ ( s^{\prime}+2\beta^{\ast} ) z_{2}+ ( \tau^{\prime}+2\beta ) z_{2}^{\ast}} \vert _{\tau, s,\tau^{\prime},s^{\prime}=0} \\ =&W_{0} ( \alpha,\beta ) F_{m,n} ( \alpha,\beta ), \end{aligned}$$
(A1)

where W 0(α,β) is defined in Eq. (17), and

$$ F_{m,n} ( \alpha,\beta ) =M_{m,n}^{-1} \frac{\partial ^{2m+2n}}{\partial\tau^{m}\partial s^{m}\partial\tau^{\prime n}\partial s^{\prime n}}e^{K_{1} ( s\tau+s^{\prime}\tau^{\prime} ) +K_{3} ( ss^{\prime}+\tau\tau^{\prime} ) +R_{1}s+R_{2}\tau +R_{3}s^{\prime}+R_{4}\tau^{\prime}} \vert _{\tau,s,\tau ^{\prime },s^{\prime}=0}, $$
(A2)

and

$$ R_{1}=2 \bigl( K_{1}\alpha+K_{3} \beta^{\ast} \bigr) =R_{2}^{\ast },\qquad R_{3}=2 \bigl( K_{1}\beta+K_{3}\alpha^{\ast} \bigr) =R_{4}^{\ast}, $$
(A3)

as well as

$$ K_{1}=\frac{\bar{n}-\sinh^{2}r}{2\bar{n}+1},\qquad K_{3}=\frac{\sinh r\cosh r}{2\bar{n}+1}. $$
(A4)

Expanding the partial exponential items in Eq. (A2), then Eq. (A2) becomes

$$\begin{aligned} F_{m,n} ( \alpha,\beta ) =&M_{m,n}^{-1} \frac{\partial ^{2m+2n}}{\partial\tau^{m}\partial s^{m}\partial\tau^{\prime n}\partial s^{\prime n}}\sum_{l,j=0}^{\infty} \frac{K_{1}^{l+j}}{l!j!} ( s\tau ) ^{l} \bigl( s^{\prime} \tau^{\prime} \bigr) ^{j} \\ &{} \times\exp \bigl[ K_{3} \bigl( ss^{\prime}+\tau \tau^{\prime} \bigr) +R_{1}s+R_{1}^{\ast} \tau+R_{3}s^{\prime}+R_{3}^{\ast} \tau^{\prime } \bigr] _{\tau,s,\tau^{\prime},s^{\prime}=0} \\ =&M_{m,n}^{-1}\sum_{l,j=0}^{\infty} \frac{K_{1}^{l+j}}{l!j!}\frac {\partial ^{2l+2j}}{\partial R_{1}^{l}\partial ( R_{1}^{\ast} ) ^{l}\partial R_{3}^{j}\partial ( R_{3}^{\ast} ) ^{j}} \\ &{} \times\frac{\partial^{2m+2n}}{\partial\tau^{m}\partial s^{m}\partial \tau^{\prime n}\partial s^{\prime n}}e^{K_{3} ( ss^{\prime }+\tau\tau^{\prime} ) +R_{1}s+R_{3}s^{\prime}+R_{1}^{\ast}\tau +R_{3}^{\ast}\tau^{\prime}}\bigg\vert _{\tau,s,\tau^{\prime },s^{\prime}=0}. \end{aligned}$$
(A5)

Further using the generating function of two-variable Hermite polynomials,

$$ \frac{\partial^{m}}{\partial\tau^{m}}\frac{\partial^{n}}{\partial \upsilon^{n}}e^{-A\tau\upsilon+B\tau+C\upsilon}\bigg\vert _{\tau=\upsilon=0}= ( \sqrt{A} ) ^{m+n}H_{m,n} \biggl( \frac {B}{\sqrt{A}},\frac{C}{\sqrt{A}} \biggr), $$
(A6)

Equation (A5) can be put into the following form

$$\begin{aligned} F_{m,n} ( \alpha,\beta ) =&\frac{K_{3}^{m+n}}{M_{m,n}}\sum _{l,j=0}^{\infty}\frac{ ( -K_{1} ) ^{l+j}}{l!j!}\frac{\partial ^{2l+2j}}{\partial R_{1}^{l}\partial ( -R_{1}^{\ast} ) ^{l}\partial R_{3}^{j}\partial ( -R_{3}^{\ast} ) ^{j}} \\ &{} \times H_{m,n} \biggl( \frac{R_{1}}{i\sqrt{K_{3}}},\frac{R_{3}}{i\sqrt {K_{3}}} \biggr) H_{m,n} \biggl( -\frac{R_{1}^{\ast}}{i\sqrt {K_{3}}},-\frac{R_{3}^{\ast}}{i\sqrt{K_{3}}} \biggr). \end{aligned}$$
(A7)

Using the relation

$$ \frac{\partial^{l+k}}{\partial x^{l}\partial y^{k}}H_{m,n} ( x,y ) =\frac{m!n!}{ ( m-l ) ! ( n-k ) !}H_{m-l,n-k} ( x,y ), $$
(A8)

thus we can obtain Eq. (18).

Appendix B: Derivation of Eq. (27)

Using the displacement operator \(D_{a} ( \alpha ) =e^{-\vert \alpha \vert ^{2}/2}e^{\alpha a^{\dagger}}e^{-\alpha^{\ast}a}\) and \(D_{b} ( \beta ) =e^{-\vert \beta \vert ^{2}/2}e^{\beta b^{\dagger}}e^{-\beta^{\ast}b}\), the CF of PS-TMSTS is given by

$$\begin{aligned} & \chi_{E} ( \alpha,\beta ) \\ &\quad =\operatorname{tr} \bigl[ D_{a} ( \alpha ) D_{b} ( \beta ) \rho ^{\mathit{SS}} \bigr] \\ &\quad =A_{1}M_{m,n}^{-1}e^{- ( \vert \alpha \vert ^{2}+\vert \beta \vert ^{2} ) /2}\operatorname{tr} \bigl[ e^{\alpha a^{\dagger }}e^{-\alpha ^{\ast}a}e^{\beta b^{\dagger}}e^{-\beta^{\ast}b}a^{m}b^{n} {\,:\,} e^{A_{2} ( a^{\dagger}b^{\dagger}+ab ) -A_{3} ( a^{\dagger }a+b^{\dagger}b ) }{\,:\,} a^{\dagger m}b^{\dagger n} \bigr] \\ &\quad =A_{1}M_{m,n}^{-1}e^{- ( \vert \alpha \vert ^{2}+\vert \beta \vert ^{2} ) /2} \frac{\partial^{2m+2n}}{\partial ( -\alpha^{\ast} ) ^{m}\partial ( -\beta^{\ast} ) ^{n}\partial\alpha^{m}\partial\beta^{n}} \\ &\qquad{} \times \operatorname{tr} \bigl[ e^{-\alpha^{\ast}a}e^{-\beta^{\ast}b}{ \,:\,} e^{A_{2} ( a^{\dagger}b^{\dagger}+ab ) -A_{3} ( a^{\dagger }a+b^{\dagger}b ) }{\,:\,} e^{\alpha a^{\dagger}}e^{\beta b^{\dagger}} \bigr]. \end{aligned}$$
(B1)

In a similar way to derive Eq. (10), using (10), one can directly obtain

$$\begin{aligned} \chi_{E} ( \alpha,\beta ) =& M_{m,n}^{-1}e^{- ( \vert \alpha \vert ^{2}+\vert \beta \vert ^{2} ) /2} \frac{\partial^{2m+2n}}{\partial ( -\alpha^{\ast} ) ^{m}\partial ( -\beta^{\ast} ) ^{n}\partial\alpha^{m}\partial\beta^{n}} \\ &{} \times\exp \bigl[ \tilde{B}_{1} \bigl( \beta \bigl( - \beta^{\ast } \bigr) +\alpha \bigl( -\alpha^{\ast} \bigr) \bigr) + \tilde{B}_{2} \bigl( \alpha \beta+ \bigl( -\alpha^{\ast} \bigr) \bigl( -\beta^{\ast} \bigr) \bigr) \bigr] _{\tau,s,\tau^{\prime},s^{\prime}=0}. \end{aligned}$$
(B2)

Taking the following transformations

$$\begin{aligned} -\alpha^{\ast} \longrightarrow&\tau-\alpha^{\ast},\qquad\alpha \longrightarrow\alpha+s, \\ \\ -\beta^{\ast} \longrightarrow&\tau^{\prime}-\beta^{\ast},\qquad \beta \longrightarrow\beta+s^{\prime}, \end{aligned}$$
(B3)

which leads to

$$\begin{aligned} & \exp \bigl[ \tilde{B}_{1} \bigl( \beta \bigl( -\beta^{\ast} \bigr) +\alpha \bigl( -\alpha^{\ast} \bigr) \bigr) +\tilde{B}_{2} \bigl( \alpha \beta+ \bigl( -\alpha^{\ast} \bigr) \bigl( - \beta^{\ast} \bigr) \bigr) \bigr] \\ &\quad \longrightarrow\exp \bigl[ -\tilde{B}_{1} \bigl( \vert \alpha \vert ^{2}+\vert \beta \vert ^{2} \bigr) +\tilde {B}_{2} \bigl( \alpha^{\ast}\beta^{\ast}+\alpha\beta \bigr) +\tilde {B}_{1} \bigl( s\tau+s^{\prime}\tau^{\prime} \bigr) +\tilde {B}_{2} \bigl( ss^{\prime}+\tau\tau^{\prime} \bigr) \bigr] \\ &\quad\hphantom{\longrightarrow}{} \times\exp \bigl[ s \bigl( \beta\tilde{B}_{2}-\alpha^{\ast} \tilde {B}_{1} \bigr) +\tau \bigl( \alpha\tilde{B}_{1}- \beta^{\ast}\tilde {B}_{2} \bigr) +\tau^{\prime} \bigl( \beta\tilde{B}_{1}-\alpha^{\ast }\tilde{B}_{2} \bigr) +s^{\prime} \bigl( \alpha\tilde{B}_{2}-\beta ^{\ast} \tilde{B}_{1} \bigr) \bigr], \end{aligned}$$
(B4)

thus Eq. (B2) becomes Eq. (27).

Appendix C: Derivation of Eq. (37)

Substituting Eq. (16) into Eq. (36), we have

$$\begin{aligned} & W_{m,n} ( \gamma,\eta,t ) \\ & \quad =\frac{4 ( 2\bar{n}+1 ) ^{-2}\pi^{-2}}{ ( 2\mathfrak {N}+1 ) ^{2}T^{2}M_{m,n}}e^{-2\frac{\vert \gamma \vert ^{2}+\vert \eta \vert ^{2}}{ ( 2\mathfrak{N}+1 ) T}}\frac{\partial^{2m+2n}}{\partial\tau^{m}\partial s^{m}\partial \tau ^{\prime n}\partial s^{\prime n}}\exp \biggl[ g_{1} \bigl( s\tau +s^{\prime }\tau^{\prime} \bigr) + \frac{g_{2}}{2} \bigl( ss^{\prime}+\tau\tau ^{\prime} \bigr) \biggr] \\ & \qquad{} \times\int\frac{d^{2}\alpha d^{2}\beta}{\pi^{2}}\exp \bigl[ - \bigl( 2g_{0}+g_{3}e^{-\kappa t} \bigr) \vert \alpha \vert ^{2}+ \bigl( 2g_{2} \beta+g_{3}\gamma^{\ast}+2g_{1}s+g_{2} \tau^{\prime} \bigr) \alpha \bigr] \\ & \qquad{} \times\exp \bigl[ + \bigl( 2g_{2}\beta^{\ast}+g_{3} \gamma +2g_{1}\tau +g_{2}s^{\prime} \bigr) \alpha^{\ast} \bigr] \\ & \qquad{} \times\exp \bigl[ - \bigl( 2g_{0}+g_{3}e^{-\kappa t} \bigr) \vert \beta \vert ^{2}+ \bigl( g_{3} \eta^{\ast}+g_{2}\tau +2g_{1}s^{\prime } \bigr) \beta \\ & \qquad{}+ \bigl( g_{3}\eta+g_{2}s+2g_{1} \tau^{\prime} \bigr) \beta ^{\ast} \bigr] _{\tau,s,\tau^{\prime},s^{\prime}=0} \\ & \quad =\frac{ ( 2\bar{n}+1 ) ^{-2}\pi^{-2}G^{-1}}{ ( 2\mathfrak{N}+1 ) ^{2}T^{2}M_{m,n}}\exp \biggl[ -\Delta_{1} \bigl( \vert \gamma \vert ^{2}+\vert \eta \vert ^{2} \bigr) + \frac {g_{2}g_{3}^{2}}{2G} \bigl( \gamma^{\ast}\eta^{\ast}+\gamma\eta \bigr) \biggr] \\ & \qquad{} \times\frac{\partial^{2m+2n}}{\partial\tau^{m}\partial s^{m}\partial \tau^{\prime n}\partial s^{\prime n}}\exp \biggl[ \frac{\mu_{1}\mu _{2}}{4G} \bigl( s \tau+s^{\prime}\tau^{\prime} \bigr) +\frac{g_{2}\mu _{2}^{2}}{8G} \bigl( ss^{\prime}+\tau\tau^{\prime } \bigr) +\frac{2\gamma\mu_{1}+\eta^{\ast }g_{2}\mu_{2}}{4G}g_{3}s \biggr] \\ & \qquad{} \times\exp \biggl[ \frac{2\gamma^{\ast}\mu_{1}+\eta g_{2}\mu _{2}}{4G}g_{3}\tau+ \frac{2\eta\mu_{1}+\gamma^{\ast }g_{2}\mu_{2}}{4G}g_{3}s^{\prime}+ \frac{2\eta ^{\ast}\mu_{1}+\gamma g_{2}\mu_{2}}{4G}g_{3}\tau^{\prime} \biggr] _{\tau,s,\tau ^{\prime},s^{\prime}=0}, \end{aligned}$$
(C1)

where (g 0,g 1,g 2,g 3) and (μ 1,μ 2,G1) are defined in Eqs. (39) and (40), respectively. In a similar way to deriving Eq. (18), we can further insert Eq. (C1) into Eqs. (37)–(38).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, HL., Hu, YQ., Jia, F. et al. Entanglement of Photon-Subtracted Two-Mode Squeezed Thermal State and Its Decoherence in Thermal Environments. Int J Theor Phys 53, 2091–2107 (2014). https://doi.org/10.1007/s10773-014-2015-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2015-y

Keywords

Navigation