Skip to main content
Log in

Constraining the Parameters of New Variable Modified Chaplygin Gas Model

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Assuming the flat FRW universe in Einstein’s gravity filled with New Variable Modified Chaplygin gas (NVMCG) dark energy and dark matter having negligible pressure. In this research work we analyze the viability on the basis of recent observation. Hubble parameter H is expressed in terms of the observable parameters H 0, \(\varOmega_{m}^{0}\) and the model parameters A 0, B 0, C 0, m, n, α and the red shift parameter z. Here we find a best fitted parameter range of A 0, B 0 keeping 0≤α≤1 and using Stern data set (12 points) by minimizing the χ 2 test at 66 %, 90 % and 99 % confidence levels. Next we do the joint analysis with BAO and CMB observations. Again evaluating the distance modulus μ(z) vs redshift (z) curve obtained in the model NVMCG with dark matter with the best fitted value of the parameters and comparing with that derived from the Union2 compilation data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Perlmutter, S.J., et al.: Nature 391, 51 (1998)

    Article  ADS  Google Scholar 

  2. Perlmutter, S.J., et al.: Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. Riess, A.G., et al.: Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  4. Tonry, J.L., et al.: Astrophys. J. 594, 1 (2003)

    Article  ADS  Google Scholar 

  5. Melchiorri, A., et al.: Astrophys. J. 536, L63 (2000)

    Article  ADS  Google Scholar 

  6. Lange, A.E., et al.: Phys. Rev. D 63, 042001 (2001)

    Article  ADS  Google Scholar 

  7. Jaffe, A.H., et al.: Phys. Rev. Lett. 86, 3475 (2001)

    Article  ADS  Google Scholar 

  8. Netterfield, C.B., et al.: Astrophys. J. 571, 604 (2002)

    Article  ADS  Google Scholar 

  9. Halverson, N.W., et al.: Astrophys. J. 568, 38 (2002)

    Article  ADS  Google Scholar 

  10. Briddle, S., et al.: Science 299, 1532 (2003)

    Article  ADS  Google Scholar 

  11. Bennet, C., et al.: (2003). astro-ph/0302207

  12. Hinshaw, G., et al.: (2003). astro-ph/0302217

  13. Kogut, A., et al.: (2003). astro-ph/0302213

  14. Spergel, D.N., et al.: (2003). astro-ph/0302209

  15. Kamenshchik, A., et al.: Phys. Lett. B 511, 265 (2001)

    Article  ADS  MATH  Google Scholar 

  16. Gorini, V., Kamenshchik, A., Moschella, U.: Phys. Rev. D 67, 063509 (2003)

    Article  ADS  Google Scholar 

  17. Benaoum, H.: hep-th/0205140

  18. Debnath, U., Banerjee, A., Chakraborty, S.: Class. Quantum Gravity 21, 5609 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Chakraborty, W., Debnath, U.: Gravit. Cosmol. 16, 223 (2010)

    Article  ADS  MATH  Google Scholar 

  20. Choudhury, T.R., Padmanabhan, T.: Astron. Astrophys. 429, 807 (2007)

    Article  ADS  Google Scholar 

  21. Lu, J., et al.: Phys. Lett. B 662, 87 (2008)

    Article  ADS  Google Scholar 

  22. Liu, D.-J., Li, X.-Z.: Chin. Phys. Lett. 22, 1600 (2005)

    Article  ADS  Google Scholar 

  23. Wu, P., Yu, H.: Phys. Lett. B 644, 16 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  24. Thakur, P., Ghose, S., Paul, B.C.: Mon. Not. R. Astron. Soc. 397, 1935 (2009)

    Article  ADS  Google Scholar 

  25. Paul, B.C., Ghose, S., Thakur, P.: arXiv:1101.1360v1 [astro-ph.CO]

  26. Paul, B.C., Thakur, P., Ghose, S.: arXiv:1004.4256v1 [astro-ph.CO]

  27. Ghose, S., Thakur, P., Paul, B.C.: arXiv:1105.3303v1 [astro-ph.CO]

  28. Chakraborty, S., Debnath, U., Ranjit, C.: Eur. Phys. J. C 72, 2101 (2012)

    Article  ADS  Google Scholar 

  29. Stern, D., et al.: J. Cosmol. Astropart. Phys. 1002, 008 (2010)

    Article  ADS  Google Scholar 

  30. Eisenstein, D.J., et al.: Astrophys. J. 633, 560 (2005)

    Article  ADS  Google Scholar 

  31. Doran, M., Stern, S., Thommes, E.: J. Cosmol. Astropart. Phys. 0704, 015 (2007)

    Article  ADS  Google Scholar 

  32. Elgaroy, O., Multamaki, T.: Astron. Astrophys. 471, 65E (2007)

    Article  ADS  Google Scholar 

  33. Efstathiou, G., Bond, J.R.: Mon. Not. R. Astron. Soc. 304, 75 (1999)

    Article  ADS  Google Scholar 

  34. Riess, A.G., et al.: Astrophys. J. 659, 98 (2007)

    Article  ADS  Google Scholar 

  35. Riess, A.G., et al.: Astrophys. J. 607, 665 (2004)

    Article  ADS  Google Scholar 

  36. Kowalaski, M., et al.: Astrophys. J. 686, 749 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to IUCAA, Pune, India for warm hospitality where part of the work was carried out. The author UD is also thankful to Institute of Theoretical Physics, Chinese Academy of Science, Beijing, China for providing TWAS Associateship Programme under which the work was completed. Also UD is thankful to CSIR, Govt. of India for providing research project grant (No. 03(1206)/12/EMR-II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ujjal Debnath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhadra, J., Debnath, U. Constraining the Parameters of New Variable Modified Chaplygin Gas Model. Int J Theor Phys 53, 1821–1831 (2014). https://doi.org/10.1007/s10773-013-1982-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1982-8

Keywords

Navigation