Skip to main content
Log in

Non-Differentiable Mechanical Model and Its Implications

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Considering that the motions of the particles take place on fractals, a non-differentiable mechanical model is built. Only if the spatial coordinates are fractal functions, the Galilean version of our model is obtained: the geodesics satisfy a Navier-Stokes-type of equation with an imaginary viscosity coefficient for a complex speed field or respectively, a Schrödinger-type of equation or hydrodynamic equations, in the case of irrotational movements. Moreover, in this approach, the analysis of the fractal fluid dynamics generates conductive properties in the case of movements synchronization both on differentiable and fractal scales, and convective properties in the absence of synchronization (e.g. laser ablation plasma is analyzed). On the other hand, if both the spatial and temporal coordinates are fractal functions, it results that, the geodesics satisfy a Klein-Gordon-type of equation on a Minkowskian manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Madelbrot, B.: The Fractal Geometry of Nature. Freeman, San Francisco (1982)

    Google Scholar 

  2. Gouyet, J.F.: Physique et Structures Fractals. Masson, Paris (1992)

    Google Scholar 

  3. Nottale, L.: Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity. World Scientific, Singapore (1993)

    MATH  Google Scholar 

  4. El Naschie, M.S., Rösler, O.E., Prigogine, I. (eds.): Quantum Mechanics, Diffusion and Chaotic Fractals. Elsevier, Oxford (1995)

    MATH  Google Scholar 

  5. Weibel, P., Ord, G., Rössler, G. (eds.): Space-time Physics and Fractality. Springer, New York (2005)

    MATH  Google Scholar 

  6. Finkelstein, D.R., Saller, H., Tang, Z.: Quantum space-time. In: Pronin, P., Sardanashvily, G. (eds.) Gravity and Space-Time, pp. 145–171. World Scientific, Singapore (1996)

    Google Scholar 

  7. Finkelstein, D., Rodriguez, E.: Quantum time-space and gravity. In: Penrose, R., Isham, C.J. (eds.) Quantum Concepts in Space and Time, pp. 247–254. Oxford (1986)

  8. EL-Nabulsi, A.R.: Chaos Solitons Fractals 42(5), 2929–2933 (2009)

    MathSciNet  Google Scholar 

  9. Cresson, J., Ben Adda, F.: Chaos Solitons Fractals 19, 1323 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cresson, J.: J. Math. Anal. Appl. 307, 48 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Nottale, L., Célérier, M.N., Lehner, T.: J. Math. Phys. 47, 032303 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  12. Célérier, M.N., Nottale, L.: J. Phys. A. Math. Gen. 37, 931 (2004)

    Article  MATH  ADS  Google Scholar 

  13. El Naschie, M.S.: Chaos Solitons Fractals 19(1), 209–236 (2004)

    Article  MATH  Google Scholar 

  14. El Naschie, M.S.: Chaos Solitons Fractals 25(5), 955–964 (2005)

    Article  MATH  Google Scholar 

  15. El Naschie, M.S.: Chaos Solitons Fractals 38(5), 1318–1322 (2008)

    Article  Google Scholar 

  16. Marek-Crnjac, L.: Chaos Solitons Fractals 41(5), 2697–2705 (2009)

    Article  Google Scholar 

  17. Marek-Crnjac, L.: Chaos Solitons Fractals 41(5), 2471–2473 (2009)

    Article  Google Scholar 

  18. Gottlieb, I., Agop, M., Ciobanu, G., Stroe, A.: Chaos Solitons Fractals 30, 380 (2006)

    Article  Google Scholar 

  19. Agop, M., Ioannou, P.D., Nica, P.: J. Math. Phys. 46, 062110 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  20. Agop, M., Nica, P.E., Ioannou, P.D., Antici, A., Paun, V.P.: Eur. Phys. J. D 49, 239–248 (2008)

    Article  ADS  Google Scholar 

  21. Agop, M., Nica, P., Girtu, M.: Gen. Relativ. Gravit. 40, 35 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Agop, M., Nica, P., Ioannou, P.D., Malandraki, O., Gavanas-Pahomi, I.: Chaos Solitons Fractals 34, 1704 (2007)

    Article  Google Scholar 

  23. Nottale, L.: L’univers et la Lumiére. Cosmologie Classique et Mirages Gravitationnels. Flammarion, Paris (1993)

    Google Scholar 

  24. He, J.H.: Chaos Solitons Fractals 36(3), 542–545 (2008)

    Article  Google Scholar 

  25. He, J.H., Wu, G.C., Austin, F.: Nonlinear Sci. Lett. A 1, 1–30 (2010)

    Google Scholar 

  26. Yang, C.D.: Nonlinear Sci. Lett. A 1, 31–37 (2010)

    Google Scholar 

  27. Buzea, C.G., Rusu, I., Bulancea, V., Badarau, G., Paun, V.P., Agop, M.: Nonlinear Sci. Lett. A 1, 109–142 (2010)

    Google Scholar 

  28. Chiroiu, V., Stiuca, P., Munteanu, L., Danescu, S.: Introduction in Nanomechanics. Romanian Academy Publishing House, Bucharest (2005)

    Google Scholar 

  29. Ferry, D.K., Goodnick, S.M.: Transport in Nanostructures. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  30. Halbwachs, F.: Theorie Relativiste des Fluid a Spin. Gauthier-Villars, Paris (1960)

    Google Scholar 

  31. Wilhem, H.E.: Phys. Rev. D 1, 2278 (1970)

    Article  ADS  Google Scholar 

  32. Landau, L., Lifshitz, E.: Fluid Mechanics. Butterworth-Heinemann, Oxford (1987)

    MATH  Google Scholar 

  33. Spitzer, L.: Physics of Fully Ionized Gases. Wiley, New York (1962)

    Google Scholar 

  34. Turcu, I.C.E., Dance, J.B.: X-rays from Laser Plasmas. Wiley, Chichester (1998)

    Google Scholar 

  35. Zienkievicz, O.C., Taylor, R.L.: The Finite Element Method. McGraw-Hill, New York (1991)

    Google Scholar 

  36. Gurlui, S., Agop, M., Nica, P., Ziskind, M., Focsa, C.: Phys. Rev. E 78, 062706 (2008)

    Article  Google Scholar 

  37. Harilal, S.S., Bindhu, C.V., Tillack, M.S., Najmabadi, F., Gaeris, A.C.: J. Appl. Phys. 93, 2380 (2003)

    Article  ADS  Google Scholar 

  38. Bulgakov, A.V., Bulgakova, N.M.: J. Phys. D 31, 693 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Agop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agop, M., Niculescu, O., Timofte, A. et al. Non-Differentiable Mechanical Model and Its Implications. Int J Theor Phys 49, 1489–1506 (2010). https://doi.org/10.1007/s10773-010-0330-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-010-0330-5

Keywords

Navigation