Skip to main content
Log in

The region interior to the event horizon of the regular Hayward black hole

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The Painlevé–Gullstrand coordinates allow us to explore the interior of the regular Hayward black hole. The behavior of an infalling particle in traversing the Hayward black hole is compared with the one inside the Schwarzschild and Reissner–Nordstrom singular black holes. When approaching the origin the test particle trajectories present differences depending if the center is regular or singular. The velocities of the infalling test particle into the modified Hayward black hole are analyzed as well. As compared with the normal Hayward, in the modified Hayward black hole the particle moves faster and the surface gravity is smaller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang. Phys. Rev. Lett. 96, 141301 (2006). arXiv:gr-qc/0602086

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Ashtekar, A., Pawlowski, T., Singh, P., Vandersloot, K.: Loop quantum cosmology of \(k=1\) FRW models. Phys. Rev. D 75, 024035 (2007). arXiv:gr-qc/0612104

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Goswami, R., Joshi, P.S., Singh, P.: Quantum evaporation of a naked singularity. Phys. Rev. Lett. 96, 031302 (2006). arXiv:gr-qc/0506129

    Article  ADS  Google Scholar 

  4. Kawai, S., Keski-Vakkuri, E., Leigh, R.G., Nowling, S.: Brane decay and an initial spacelike singularity. Phys. Rev. Lett. 96, 031301 (2006). arXiv:hep-th/0507163

    Article  ADS  Google Scholar 

  5. Dai, D.-C., Lue, A., Starkmanb, G., Stojkovica, D.: Electroweak stars: how nature may capitalize on the standard model’s ultimate fuel. JCAP 2010(12), 004. arXiv:0912.0520

  6. Rovelli, C., Vidotto, F.: Planck stars. Int. J. Mod. Phys. D 23(1442026), 11 (2014). arXiv:1401.6562

  7. Bardeen, J.: In: Proceedings of the 5th International Conference on Gravitation and the Theory of Relativity. Tbilisi, Georgia. 913 September 1968. Tbilisi University Press, Tbilisi (1968)

  8. Mbonye, M.R., Kazanas, D.: Nonsingular black hole model as a possible product of gravitational collapse. Phys. Rev. D 72, 024016 (2005). arXiv:gr-qc/0506111

    Article  ADS  MathSciNet  Google Scholar 

  9. Spallucci, E., Smailagic, A.: Regular black holes from semi-classical down to Planckian size. Int. J. Mod. Phys. D 26, 1730013 (2017). arXiv:1701.04592

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Pérez, D., Romero, G.E., Correa, C.A., Perez Bergliaffa, S.E.: Analysis of a regular black hole interior. Int. J. Mod. Phys. Conf. Ser. 03, 396–407 (2011). arXiv:1111.0690

    Article  Google Scholar 

  11. Martel, K., Poisson, E.: Regular coordinate systems for Schwarzschild and other spherical spacetimes. Am. J. Phys. 69, 476–480 (2001). arXiv:gr-qc/0001069

    Article  ADS  Google Scholar 

  12. Hayward, S.A.: Formation and evaporation of nonsingular black holes. Phys. Rev. Lett. 96, 031103 (2006). arXiv:gr-qc/0506126

    Article  ADS  Google Scholar 

  13. De Lorenzo, T., Pacilio, C., Rovelli, C., Speziale, S.: On the effective metric of a planck star. Gen. Relativ. Gravit. 47, 41 (2015). arXiv:1412.6015

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Mehdipour, S.H., Ahmadi, M.H.: Black hole remnants in Hayward solutions and noncommutative effects. Nucl. Phys. B 926, 4969 (2018). arXiv:1604.08584

    Article  MathSciNet  MATH  Google Scholar 

  15. Chiba, T., Kimura, M.: A note on geodesics in the hayward metric. Prog. Theor. Exp. Phys. 2017 04E01. arXiv:1701.04910

  16. Hamilton, A.J.S., Lisle, J.P.: The river model of black holes. Am. J. Phys. 76, 519–532 (2008). arXiv:gr-qc/0411060

    Article  ADS  Google Scholar 

  17. Liberati, S., Sonego, S., Visser, M.: Faster-than-c signals, special relativity, and causality. Ann. Phys. 298, 167185 (2002). arXiv:gr-qc/0107091

    Article  MathSciNet  MATH  Google Scholar 

  18. Blau, M., O’Loughlin, M.: Horizon shells: classical structure at the horizon of a black hole. Int. J. Mod. Phys. D 25, 1644010 (2016). arXiv:1604.01181

    Article  ADS  MATH  Google Scholar 

  19. Poisson, E.: A Relativist’s Toolkit. Cambridge University Press, Cambridge (2004). Sect. 5.3.2

    Book  MATH  Google Scholar 

  20. Poisson, E., Israel, W.: Internal structure of black holes. Phys. Rev. D 41, 1796–1809 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  21. Hamilton, A.J.S., Pollack, S.E.: Inside charged black holes. I. Baryons Phys. Rev. D 71, 084031 (2005). arXiv:gr-qc/0411061

    Article  ADS  MathSciNet  Google Scholar 

  22. Nielsen, A.B., Visser, M.: Production and decay of evolving horizons. Class. Quantum Grav. 23, 4637–4658 (2006). arXiv:gr-qc/0510083

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Debnath, U.: Accretion and evaporation of modified Hayward black hole. Eur. Phys. J. C 75(129), 5 (2015). arXiv:1503.01645

  24. Haggard, H.M., Rovelli, C.: Quantum-gravity effects outside the horizon spark black to white hole tunneling. Phys. Rev. D 92, 104020 (2015). arXiv:1407.0989

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

Ivan Perez-Roman acknowledges support by CONACYT through a Ms. S. scholarship. Nora Bretón acknowledges partial support by CONACYT Grant 284489.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nora Bretón.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez-Roman, I., Bretón, N. The region interior to the event horizon of the regular Hayward black hole. Gen Relativ Gravit 50, 64 (2018). https://doi.org/10.1007/s10714-018-2385-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-018-2385-1

Keywords

Navigation