Skip to main content
Log in

Lie algebras of curves and loop-bundles on surfaces

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

W. Goldman and V. Turaev defined a Lie bialgebra structure on the \(\mathbb Z\)-module generated by free homotopy classes of loops of an oriented surface (i.e. the conjugacy classes of its fundamental group). We generalize this construction to a much larger space of equivalence classes of curves by replacing homotopies by thin homotopies, following the combinatorial approach of M. Chas. As an application we use properties of the generalized bracket to give a geometric proof of a conjecture by Chas in the original setting of full homotopy classes, namely a characterization of homotopy classes of simple curves in terms of the Goldman–Turaev bracket.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cahn, P.: A generalization of the Turaev cobracket and the minimal self-intersection number of a curve on a surface. N. Y. J. Math. 19, 253–283 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Cahn, P., Chernov, V.: Intersections of loops and the Andersen–Mattes–Reshetikhin algebra. J. Lond. Math. Soc. (2) 87(3), 785–801 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chas, M.: Combinatorial Lie bialgebras of curves on surfaces. Topology 43(3), 543–568 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chas, M.: Minimal intersection of curves on surfaces. Geom. Dedicata. 144(1), 25–60 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chas, M.: The goldman bracket and the intersection of curves on surfaces. Geometry, Groups and Dynamics: ICTS Program “Groups, Geometry and Dynamics”, December 3–16, 2012, Almora, India, pp. 73–83 (2015)

  6. Chas, M.: Relations between word length, hyperbolic length and self-intersection number of curves on surfaces. Recent Adv. Math. 21, 45–75 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Chas, M., Gadgil, S.: The extended Goldman bracket determines intersection numbers for surfaces and orbifolds. Algebraic Geometric Topol. 16(5), 2813–2838 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chas, M., Kabiraj, A.: The lie bracket of undirected closed curves on a surface. Trans. Am. Math. Soc. 375, 2365–2386 (2021)

    MathSciNet  MATH  Google Scholar 

  9. Chas, M., Krongold, F.: An algebraic characterization of simple closed curves on surfaces with boundary. J. Topol. Anal. 2(03), 395–417 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chas, M., Krongold, F.: Algebraic characterization of simple closed curves via Turaev’s cobracket. J. Topol. 9(1), 91–104 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chas, M., McMullen, C.T., Phillips, A.: Almost simple geodesics on the triply-punctured sphere. Math. Z. 291(3), 1175–1196 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chas, M., Phillips, A.: Self-intersection numbers of curves on the punctured torus. Exp. Math. 19(2), 129–148 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chas, M., Phillips, A.: Self-intersection numbers of curves in the doubly punctured plane. Exp. Math. 21(1), 26–37 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Goldman, W.M.: Invariant functions on Lie groups and Hamiltonian flows of surface group representations. Invent. Math. 85(2), 263–302 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goresky, R.M.: Whitney stratified chains and cochains. Trans. Am. Math. Soc. 267(1), 175–196 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jeffrey, L.C.: Flat connections on oriented 2-manifolds. Bull. Lond. Math. Soc. 37(1), 1–14 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Milnor, J.: Construction of universal bundles. I. Ann. Math. 2(63), 272–284 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  18. Reiris, M., Spallanzani, P.: A calculus in differentiable spaces and its application to loops. Class. Quantum Gravity 16(8), 2697–2708 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Teleman, C.: Généralisation du groupe fondamental. Ann. Sci. École Norm. Sup. 3(77), 195–234 (1960)

    Article  MATH  Google Scholar 

  20. Turaev, V.G.: Skein quantization of Poisson algebras of loops on surfaces. Ann. Sci. École Norm. Sup. (4) 24(6), 635–704 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Paternain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso, J., Paternain, M., Peraza, J. et al. Lie algebras of curves and loop-bundles on surfaces. Geom Dedicata 217, 63 (2023). https://doi.org/10.1007/s10711-023-00802-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10711-023-00802-1

Keywords

Mathematics Subject Classification

Navigation