Skip to main content
Log in

Multiple cohesive crack growth in brittle materials by the extended Voronoi cell finite element model

  • Research Article
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

This paper is aimed at modeling the propagation of multiple cohesive cracks by the extended Voronoi cell finite element model or X-VCFEM. In addition to polynomial terms, the stress functions in X-VCFEM include branch functions in conjunction with level set methods and multi-resolution wavelet functions in the vicinity of crack tips. The wavelet basis functions are adaptively enriched to accurately capture crack-tip stress concentrations. Cracks are modeled by an extrinsic cohesive zone model in this paper. The incremental crack propagation direction and length are adaptively determined by a cohesive fracture energy based criterion. Numerical examples are solved and compared with existing solutions in the literature to validate the effectiveness of X-VCFEM. The effect of cohesive zone parameters on crack propagation is studied. Additionally, the effects of morphological distributions such as length, orientation and dispersion on crack propagation are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Barsoum RS (1976) On the use of isoparametric finite elements in linear fracture mechanics. Int J Numer Meth Eng 10:25–37

    Article  MATH  Google Scholar 

  • Barsoum RS (1977) Triangular quarter-point elements as elastic and perfectly-plastic crack tip elements. Int J Numer Meth Eng 11:85–98

    Article  MATH  Google Scholar 

  • Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Meth Eng 45:601–620

    Article  MATH  MathSciNet  Google Scholar 

  • Belytschko T, Moes N, Usui A, Parimi C (2001) Arbitrary discontunities in finite element. Int J Numer Meth Eng 50:993–1013

    Article  MATH  Google Scholar 

  • Camacho GT, Ortiz M (1996) Computational modeling of impact damage in brittle materials. Int J Solid Struct 33:2899–2938

    Article  MATH  Google Scholar 

  • Carpinteri A (1989) Finite deformation effects in homogeneous and interfacial fracture. Eng Fract Mech 32:265–278

    Article  Google Scholar 

  • Crisfield MA (1981) A fast incremental/iterative solution procedure that handles ‘snap-through’. Comput Struct 13:55–62

    Article  MATH  Google Scholar 

  • Crisfield MA (1983) An arc-length method including line searches and accelerations. Int J Numer Meth Eng 19:1269–1289

    Article  MATH  Google Scholar 

  • Dolbow J, Moes N, Belytschko T (2000) Discontinuous enrichent in finite elements with a partition of unity method. Finite Elem Anal Des 36(3–4):235–260

    Article  MATH  Google Scholar 

  • Elices M, Guinea GV, Gomez J, Planas J (2002) The cohesive zone model: advantages, limitations and challenges. Eng Fract Mechan 69:137–163

    Article  Google Scholar 

  • Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 519–527

  • Foulk JW, Allen DH, Helms KLE (2000) Formulation of a three-dimensional cohesive zone model for application to a finite element algorithm. Comput Meth Appl Mechan Eng 183:51–66

    Article  MATH  Google Scholar 

  • Ghosh S, Ling Y, Majumdar B, Ran K (2000) Interfacial debonding analysis in multiple fiber reinforced composites. Mechan Mater 32:561–591

    Article  Google Scholar 

  • Ghosh S, Moorthy S (1998) Particle cracking simulation in non-uniform microstructures of metal-matrix composites. Acta Metallurigica et Materialia 46:965–982

    Article  Google Scholar 

  • Ghosh S, Mukhopadhyay SN (1991) A two dimensional automatic mesh generator for finite element analysis of randomly dispersed composites. Comput Struct 41:241–256

    Article  Google Scholar 

  • Ghosh S, Moorthy S (2004) Three dimensional Voronoi cell finite element model for modeling microstructures with ellipsoidal heterogeneities. Comput Mechan 34:510–531

    Article  ADS  MATH  Google Scholar 

  • Glowinski R, Lawton W, Ravachol M, Tenenbaum E (1990) Wavelet solutions of linear and nonlinear elliptic, parabolic and hyperbolic problems in one space dimension. Comput Meth Appl Sci Eng. SIAM, Philadelphia, PA

  • Geubelle PH (1995) Finite deformation effects in homogeneous and interfacial fracture. Int J Solid Struct 32:1003–1016

    Article  MATH  Google Scholar 

  • Henshell RD, Shaw KG (1975) Crack tip finite elements are unnecessary. Int J Numer Meth Eng 9:495–507

    Article  MATH  Google Scholar 

  • Hibbit HD (1977) Some properties of singular isoparametric element. Int J Numer Meth Eng 11:180–184

    Article  Google Scholar 

  • Jaffard S (1992) Wavelet methods for fast resolution of elliptic problem. SIAM J Numer Anal 29:965–986

    Article  MATH  MathSciNet  Google Scholar 

  • Jirasek M (2000) A comparative study on finite elements with embedded discontinuities. Comput Meth Appl Mechan Eng 188:307–330

    Article  MATH  Google Scholar 

  • Kalthoff JK (2000) Modes of dynamic shear failure in solids. Int J Fract 101:1–31

    Article  Google Scholar 

  • Kalthoff JK, Winkler S (1988) Failure mode transition at high rates of loading. Proceedings of the international conference on impact loading and dynamics behaviour of materials. Chiem CY, Kunze HD, Meyer LW (eds) 43–56

  • Li S, Ghosh S (2004) Debonding in composite microstructures with morphologic variations. Int J comput meth 1:121–149

    Article  MATH  Google Scholar 

  • Li S, Ghosh S (2006) Extended Voronoi cell finite element model for multiple cohesive crack propagation in brittle materials. Int J Numer Meth Eng 65:1028–1067

    Article  MATH  Google Scholar 

  • Lin KY, Tong P (1980) Singular finite elements for the fracture analysis of v-notched plate. Int J Numer Meth Eng 15:1343–1354

    Article  MATH  Google Scholar 

  • Mariani S, Perego U (2003) Extended finite element method for quasi-brittle fracture. Int J Numer Meth Eng 58:103–126

    Article  MATH  MathSciNet  Google Scholar 

  • Moës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Int J Numer Meth Eng 69:813–833

    Google Scholar 

  • Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Eng Fract Mechan 46(1):131–150

    MATH  Google Scholar 

  • Moorthy S, Ghosh S (1996) A model for analysis for arbitrary composite and porous microstructures with Voronoi cell finite elements. Int J Num Meth Eng 39: 2363–2398

    Article  Google Scholar 

  • Moorthy S, Ghosh S (2000) Adaptivity and convergence in the Voronoi cell finite element model for analyzing heterogeneous materials. Comput Meth Appl Mechan Eng 185:37–74

    Article  MATH  Google Scholar 

  • Needleman A (1987) A continuum model for void nucleation by interfacial debonding. J Appl Mechan 54:525– 531

    Article  MATH  Google Scholar 

  • Needleman A (1990) An analysis of decohesion along an imperfect interface. Int J Fract 42:21–40

    Article  Google Scholar 

  • Needleman A (1992) Micromechanical modeling of interfacial decohesion. Ultramicroscopy 40:203–214

    Article  MathSciNet  Google Scholar 

  • Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive element for three-dimensional crack-propagation analysis. Int J Numer Meth Eng 44:1267–1282

    Article  MATH  Google Scholar 

  • Qian S, Weiss J (1993) Wavelets and the numerical solution of boundary value problems. Appl Math Lett 6:47–52

    Article  MATH  MathSciNet  Google Scholar 

  • Piltner R (1985) Special finite elements with holes and internal cracks. Int J Numer Meth Eng 21:1471–1485

    Article  MATH  MathSciNet  Google Scholar 

  • Rethore J, Gravouil A, Combescure A (2005) An energy-conserving scheme for dynamic crack growth using the eXtended finite element method. Int J Numer Meth Eng 63:631–659

    Article  MATH  MathSciNet  Google Scholar 

  • Schweizerhof KH, Wriggers Y (1986) Consistent linearization for path following methods in nonlinear F.E. analysis. Comput Meth Appl Mechan Eng 59:261–279

    Article  MATH  Google Scholar 

  • Sethian JA (2001) Evolution, implementation, and application of level set and fast marching methods for advancing fronts. J Comput Phys 169:503–555

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Tvergaard V (1990) Effect of fiber debonding in a whisker-reinforced metal. Mater Sci Eng A 125:203–213

    Article  Google Scholar 

  • Ventura G, Xu JX, Belytschko T (2002) A vector level set method and new discontinuity approximations for crack growth by EFG. Int J Numer Meth Eng 54:923–944

    Article  MATH  Google Scholar 

  • Ventura G, Budyn E, Belytschko T (2003) Vector level sets for description of propagating cracks in finite elements. Int J Numer Meth Eng 58:1571–1592

    Article  MATH  Google Scholar 

  • Tong P, Pian THH, Lasry SJ (1973) A hybrid-element approach to crack problems in plane elasticity. Int J Numer Meth Eng 7:297–308

    Article  MATH  Google Scholar 

  • Tong P (1977) A hybrid crack element for rectilinear anisotropic material. Int J Numer Meth Eng 11:377–403

    Article  MATH  Google Scholar 

  • Xu XP, Needleman A (1994) Finite deformation effects in homogeneous and interfacial fracture. J Mechan Phys Solid 42:1397–1434

    Article  MATH  ADS  Google Scholar 

  • Yagawa Y, Aizawa T, Ando Y (1980) Crack analysis of power hardening materials using a penalty function and superposition method. Proc 12th Conf Fract Mechan, ASTM STP 700:439–452

  • Yamamoto Y, Tokuda N (1973) Determination of stress intensity factor in cracked plates by the finite element method. Int J Numer Meth Eng 6:427–439

    Article  MATH  Google Scholar 

  • Yang Q, Cox B (2005) Cohesive models for damage evolution in laminated composites. Int J Fract 133:107–137

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somnath Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Ghosh, S. Multiple cohesive crack growth in brittle materials by the extended Voronoi cell finite element model. Int J Fract 141, 373–393 (2006). https://doi.org/10.1007/s10704-006-9000-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-006-9000-2

Keywords

Navigation