Skip to main content
Log in

Bohmian Trajectories for Kerr–Newman Particles in Complex Space-Time

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Complexified Liénard–Wiechert potentials simplify the mathematics of Kerr–Newman particles. Here we constrain them by fiat to move along Bohmian trajectories to see if anything interesting occurs, as their equations of motion are not known. A covariant theory due to Stueckelberg is used. This paper deviates from the traditional Bohmian interpretation of quantum mechanics since the electromagnetic interactions of Kerr–Newman particles are dictated by general relativity. A Gaussian wave function is used to produce the Bohmian trajectories, which are found to be multi-valued. A generalized analytic continuation is introduced which leads to an infinite number of trajectories. These include the entire set of Bohmian trajectories. This leads to multiple retarded times which come into play in complex space-time. If one weights these trajectories by their natural Bohmian weighting factors, then it is found that the particles do not radiate, that they are extended, and that they can have a finite electrostatic self energy, thus avoiding the usual divergence of the charged point particle. This effort does not in any way criticize or downplay the traditional Bohmian interpretation which does not assume the standard electromagnetic coupling to charged particles, but it suggests that a hybridization of Kerr–Newman particle theory with Bohmian mechanics might lead to interesting new physics, and maybe even the possibility of emergent quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The static Kerr–Newman solution to the electromagnetic field is double valued when the observation point is continued along paths in space-time. This is well known and studied. Here we are talking about multi-valued analytic functions of the world time variable when the trajectory is a function of this time and not static.

  2. The non-timelike trajectories in the Bohmian set constitute a negligibly small fraction and are ignored here.

  3. Q here is the actual physical charge of the particle.

  4. For elementary particles, these metrics have a naked singularity due to the electromagnetic field energy. If the particle becomes effectively an extended jellium by the GAN transformation, then this naked singularity would generally disappear.

References

  1. Maldacena, J., Susskind, L.: Cool horizons for entangled black holes. Fortschritte der Physik 61(9), 781–811 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  2. Susskind, L.: Dear Qubitzers, \(\text{GR}=\text{ QM }\) (2017). arXiv:1708.03040 [hep-th]

  3. Van Raamsdonk, M.: Building up spacetime with quantum entanglement. Gen. Relativ. Gravit. 42(10), 2323–2329 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  4. Cowen, R.: The quantum source of space-time. Nat. News 527(7578), 290 (2015)

    Article  Google Scholar 

  5. Verlinde, E.: Emergent gravity and the dark universe. SciPost Phys. 2(3), 016 (2017). arXiv:1611.02269

  6. Einstein, A., Rosen, N.: The particle problem in the general theory of relativity. Phys. Rev. 48(1), 73–77 (1935)

    Article  ADS  Google Scholar 

  7. Sauer, T.: Einstein’s Unified Field Theory Program. The Cambridge companion to Einstein. Cambridge University Press, New York (2014)

    Book  Google Scholar 

  8. ’t Hooft, G.: The cellular automaton interpretation of quantum mechanics (2014). arXiv:1405.1548 [quant-ph]

  9. Rovelli, C.: Relational quantum mechanics. Int. J. Theor. Phys. 35(8), 1637–1678 (1996)

    Article  MathSciNet  Google Scholar 

  10. Weinberg, S.: Collapse of the state vector. Phys. Rev. A 85(6), 062116 (2012)

    Article  ADS  Google Scholar 

  11. Penrose, R.: The Road to Reality: A Complete Guide to the Laws of the Universe. Vintage, New York (2007). reprint edition

  12. Penrose, R.: Fashion, Faith, and Fantasy in the New Physics of the Universe. Princeton University Press, Princeton (2016)

    Book  Google Scholar 

  13. Davidson, M.: The Lorentz-Dirac equation in complex space-time. Gen. Relativ. Gravit. 44(11), 2939–2964 (2012). arXiv: 1109.4923

    Article  ADS  MathSciNet  Google Scholar 

  14. Davidson, M.: A study of the Lorentz-Dirac equation in complex space-time for clues to emergent quantum mechanics. J. Phys. 361(1), 012005 (2012)

    Google Scholar 

  15. Hestenes, D.: The zitterbewegung interpretation of quantum mechanics. Found. Phys. 20(10), 1213–1232 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  16. Derakhshani, M.: A suggested answer to Wallstrom’s criticism: zitterbewegung stochastic mechanics I (2015). arXiv:1510.06391 [quant-ph]

  17. Adamo, T.M., Kozameh, C., Newman, E.T.: Null geodesic congruences, asymptotically-flat spacetimes and their physical interpretation. Living Rev. Relativ. 12(6) (2009). www.livingreviews.org/lrr-2009-6

  18. Newman, E.T.: Heaven and its properties. General Relativity and Gravitation 7(1), 107–111 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  19. Newman, E.T.: Complex coordinate transformations and the Schwarzschild-Kerr metrics. J. Math. Phys. 14, 774 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  20. Burinskii, A.Y.: Microgeon with a Kerr metric. Sov. Phys. J. 17(8), 1068–1071 (1974)

    Article  Google Scholar 

  21. Burinskii, A.: Kerr spinning particle, strings, and superparticle models. Phys. Rev. D 57(4), 2392 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  22. Burinskii, A.: The Dirac–Kerr electron (2005)

  23. Burinskii, A.: The Dirac-Kerr-Newman electron. Gravit. Cosmol. 14, 109–122 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  24. Burinskii, A.: Gravitational strings beyond quantum theory: electron as a closed string (2011). arXiv:1109.3872

  25. Burinskii, A.: Regularized Kerr-Newman solution as a gravitating soliton. J. Phys. A 43, 392001 (2010). arXiv:1003.2928

    Article  MathSciNet  Google Scholar 

  26. Bacciagaluppi, G., Valentini, A.: Quantum theory at the crossroads: reconsidering the 1927 Solvay conference, 1st edn. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  27. Bohm, D., Hiley, B.J.: The Undivided Universe: An Ontological Interpretation of Quantum Theory, revised edn. Routledge, London (1995)

    MATH  Google Scholar 

  28. Dürr, D., Goldstein, S., Zanghì, N.: Quantum Physics Without Quantum Philosophy. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  29. Holland, P.R.: The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics, revised edn. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  30. Fock, V.: Die Eigenzeit in der klassischen und in der Quantenmechanik. Phys. Z. Sowjetunion 12, 404–425 (1937)

    MATH  Google Scholar 

  31. Stueckelberg, E.: La signification du temps propre en mécanique ondulatoire. Helv. Phys. Acta 14, 322–323 (1941)

    MathSciNet  MATH  Google Scholar 

  32. Horwitz, L.P.: Relat. Quantum Mech. Springer, Dordrecht (2015)

    Google Scholar 

  33. Kyprianidis, A.: Particle trajectories in relativistic quantum mechanics. Phys. Lett. A 111, 111–116 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  34. Kyprianidis, A.: Scalar time parametrization of relativistic quantum mechanics: the covariant Schrödinger formalism. Phys. Rep. 155(1), 1–27 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  35. Fanchi, J.R.: Quantum potential in relativistic dynamics. Found. Phys. 30(8), 1161–1189 (2000)

    Article  MathSciNet  Google Scholar 

  36. Dürr, D., Goldstein, S., Norsen, T., Struyve, W., Zanghì, N.: Can Bohmian mechanics be made relativistic? Proc. R. Soc. Lond. A470, 20130699 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  37. Newman, E.T.: Private communication (2017)

  38. Burinskii, A.: Gravitating lepton bag model. J. Exp. Theor. Phys. 121(2), 194–205 (2015)

    Article  ADS  Google Scholar 

  39. Burinskii, A.: Emergence of the Dirac equation in the solitonic source of the Kerr spinning particle. Gravit. Cosmol. 21(1), 28–34 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  40. Land, M.C.: Pre-Maxwell electrodynamics. Found. Phys. 28(9), 1479–1487 (1998)

    Article  MathSciNet  Google Scholar 

  41. Land, M.C., Horwitz, L.P.: Green’s functions for off-shell electromagnetism and spacelike correlations. Found. Phys. 21(3), 299–310 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  42. Land, M., Horwitz, L.P.: Offshell quantum electrodynamics. J. Phys. 437(1), 012011 (2013)

    Google Scholar 

  43. Greenberger, D.M.: Theory of particles with variable mass. I. Formalism. J. Math. Phys. 11(8), 2329–2340 (1970)

    Article  ADS  Google Scholar 

  44. Greenberger, D.M.: Theory of particles with variable mass. II. Some physical consequences. J. Math. Phys. 11(8), 2341–2347 (1970)

    Article  ADS  Google Scholar 

  45. Greenberger, D.M.: Some useful properties of a theory of variable mass particles. J. Math. Phys. 15(4), 395 (1974)

    Article  ADS  Google Scholar 

  46. Greenberger, D.M.: Wavepackets for particles of indefinite mass. J. Math. Phys. 15(4), 406 (1974)

    Article  ADS  Google Scholar 

  47. Horwitz, L.: A statistical mechanical model for mass stability in the SHP theory (2016). arXiv:1607.03742 [physics]

  48. Land, M.: Speeds of light and mass stability in Stueckelberg–Horwitz–Piron electrodynamics (2016). arXiv:1604.01638 [hep-th, physics:physics]

  49. Bender, C.M., Brody, D.C., Jones, H.F.: Complex extension of quantum mechanics. Phys. Rev. Lett. 89(27), 270401 (2002)

    Article  MathSciNet  Google Scholar 

  50. Swanson, M.: Transition elements for a non-Hermitian quadratic Hamiltonian. J. Math. Phys. 45(2), 585–601 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  51. Poirier, B.: Flux continuity and probability conservation in complexified Bohmian mechanics. Phys. Rev. A 77(2), 022114 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  52. Chou, C.-C., Wyatt, R.: Complex-extended Bohmian mechanics. J. Chem. Phys. 132(13), 134102 (2010)

    Article  ADS  Google Scholar 

  53. Aharonovich, I., Horwitz, L.P.: Radiation-reaction in classical off-shell electrodynamics. I. The above mass-shell case. J. Math. Phys. 53(3), 032902-1–032902-29 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  54. Poisson, E.: A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics, 1st edn. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  55. Newman, E.T., Couch, E., Chinnapared, K., Exton, A., Prakash, A., Torrence, R.: Metric of a rotating, charged mass. J. Math. Phys. 6(6), 918 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  56. Newman, E.T.: Maxwell’s equations and complex Minkowski space. J. Math. Phys. 14(1), 102 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  57. Burinskii, A.: Kerr geometry as space-time structure of the Dirac electron (2007). arXiv:0712.0577

  58. Lynden-Bell, D.: A magic electromagnetic field. Stellar Astrophysical Fluid Dynamics, pp. 369–375. Cambridge University Press, Cambridge (2003)

  59. Pekeris, C.L., Frankowski, K.: The electromagnetic field of a Kerr-Newman source. Phys. Rev. A 36(11), 5118 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  60. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1999)

    MATH  Google Scholar 

  61. Davidson, M.P.: Quantum wave equations and non-radiating electromagnetic sources. Ann. Phys. 322(9), 2195–2210 (2007). arXiv:quant-ph/0606245

    Article  ADS  MathSciNet  Google Scholar 

  62. Barut, A.O.: Quantum-electrodynamics based on self-energy. Phys. Scr. 1988(T21), 18 (1988)

    Article  Google Scholar 

  63. Barut, A.O., Dowling, J.P.: Self-field quantum electrodynamics: the two-level atom. Phys. Rev. A 41(5), 2284–2294 (1990)

    Article  ADS  Google Scholar 

  64. Barut, A.O., Dowling, J.P.: Interpretation of self-field quantum electrodynamics. Phys. Rev. A 43(7), 4060 (1991)

    Article  ADS  Google Scholar 

  65. Barut, A.O., Dowling, J.P.: QED based on self-fields: a relativistic calculation of g-2. Zeitschrift für Naturforschung A 44(11), 1051–1056 (2014)

    ADS  Google Scholar 

  66. Davidson, M.: Predictions of the hydrodynamic interpretation of quantum mechanics compared with quantum electrodynamics for low energy bremsstrahlung. Annales de la Fondation Louis de Broglie 29(4), 661–680 (2004)

    Google Scholar 

  67. Burinskii, A., Magli, G.: Kerr-Schild approach to the boosted Kerr solution. Phys. Rev. D 61(4), 044017 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  68. Holstein, B.R.: How large is the natural magnetic moment? Am. J. Phys. 74(12), 1104–1111 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  69. Burinskii, A.: Kerr-Newman electron as spinning soliton. Int. J. Mod. Phys. A 29(26), 1450133 (2014)

    Article  ADS  Google Scholar 

  70. Leggett, A.J.: Testing the limits of quantum mechanics: motivation, state of play, prospects. J. Phys. 14(15), R415 (2002)

    Google Scholar 

  71. Arndt, M., Hornberger, K.: Testing the limits of quantum mechanical superpositions. Nat. Phys. 10(4), 271–277 (2014)

    Article  Google Scholar 

  72. Bialynicki-Birula, I.: On the linearity of the Schrödinger equation. Braz. J. Phys. 35(2A), 211–215 (2005)

    Article  ADS  Google Scholar 

  73. Everett, H.: The theory of the universal wave function. In: Dewitt, B.S., Graham, N. (eds.) The Many-Worlds Interpretation of Quantum Mechanics, pp. 3–140. Princeton University Press, Princeton (1973)

    Google Scholar 

Download references

Acknowledgements

I would like to thank the two reviewers for this paper who provided valuable insights and suggestions. I would also like to thank Ezra Newman for his helpful correspondence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Davidson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davidson, M. Bohmian Trajectories for Kerr–Newman Particles in Complex Space-Time. Found Phys 48, 1590–1616 (2018). https://doi.org/10.1007/s10701-018-0217-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-018-0217-5

Keywords

Navigation