Skip to main content
Log in

Poisson approximation in terms of the Gini–Kantorovich distance

  • Published:
Extremes Aims and scope Submit manuscript

Abstract

It is long known that the distribution of a sum Sn of independent non-negative integer-valued random variables can often be approximated by a Poisson law: Snπλ, where . The problem of evaluating the accuracy of such approximation has attracted a lot of attention in the past six decades. From a practical point of view, the problem has important applications in insurance, reliability theory, extreme value theory, etc.; from a theoretical point of view, it provides insights into Kolmogorov’s problem.

Among popular metrics considered in the literature is the Gini–Kantorovich distance dG. The task of establishing an estimate of dG(Sn;πλ) with correct (the best possible) constant at the leading term remained open for a long while.

The paper presents a solution to that problem. A first-order asymptotic expansion is established as well. We show that the accuracy of approximation can be considerably better if the random variables obey an extra condition involving the first two moments. A sharp estimate of the accuracy of shifted (translated) Poisson approximation is established as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arak, T.V., Zaitsev, A.Yu.: Uniform limit theorems for sums of independent random variables. Proc. Steklov. Inst. Math. 174, 3–214 (1986)

    MathSciNet  MATH  Google Scholar 

  • Arenbaev, N.K.: Asymptotic behavior of the multinomial distribution. Theory Probab. Appl. 21, 805–810 (1976)

    Article  MathSciNet  Google Scholar 

  • Balakrishnan, N., Koutras, M.V.: Runs and scans with applications. New York: Wiley (2001)

  • Barbour, A.D., Holst, L., Janson, S.: Poisson approximation. Oxford: Clarendon Press (1992)

  • Barbour, A. D., Xia, A.: On Stein’s factors for Poisson approximation in Wasserstein distance. — Bernoulli 6, 943–954 (2006)

    Article  MathSciNet  Google Scholar 

  • Bernstein, S. N.: Sur l’extensiori du theoreme limite du calcul des probabilites aux sommes de quantites dependantes. Math. Annalen. 97, 1–59 (1926)

    Article  Google Scholar 

  • Čekanavičius, V., Kruopis, J.: Signed Poisson approximation: a possible alternative to normal and Poisson laws. Bernoulli 6(4), 591–606 (2000)

    Article  MathSciNet  Google Scholar 

  • Cochran, W.: Sampling techniques. New York: Wiley (1977)

  • Deheuvels, P., Pfeifer, D., Puri, M.L.: A semigroup approach to Poisson approximation. — Ann. Probab. 14(2), 663–676 (1989)

    Article  MathSciNet  Google Scholar 

  • Dobrushin, R.L.: Prescribing a system of random variables by conditional distributions. Theory Probab. Appl. 15(3), 458–486 (1970)

    Article  Google Scholar 

  • Gerber, H.U.: An introduction to mathematical risk theory. Philadelphia: Huebner Foundation (1979)

  • Gini, C.: Di unà misura delle relazioni tra le graduatorie di due caratteri. In: Appendix to Hancini A. Le Elezioni Generali Politiche del 1913 nel Comune di Roma. Rome: Ludovico Cecehini. (1914)

  • Goldstein, L.: Bounds on the constant in the mean central limit theorem. Ann. Probab. 38(4), 1672–1689 (2010)

    Article  MathSciNet  Google Scholar 

  • Kantorovich, L.V.: On the translocation of mass. — Doklady USSR. Acad. Sci. 37(7-8), 227–229 (1942). Trans: Management Sci. (1958) v. 5, No 1, 1–4.

    Google Scholar 

  • Kolmogorov, A. N.: Two uniform limit theorems for sums of independent random variables. Theory Probab. Appl. 1(4), 384–394 (1956)

    Article  Google Scholar 

  • Leadbetter, M.R., Lindgren, G., Rootzen, H.: Extremes and related properties of random sequences and processes. New York: Springer. (1983)

  • Liapunov, A. M.: Nouvelle forme du théorème sur la limite des probabilités. Mem Acad. Imp. Sci. St.–Peterburg 12, 1–24 (1901)

    Google Scholar 

  • Novak, S.Y.: Extreme value methods with applications to finance. London: Chapman & Hall/CRC Press. ISBN 9781439835746 (2011)

  • Novak, S.Y.: Poisson approximation. Probability Surveys, v. 16, 228–276. (2019)

  • Novak, S.Y.: On the accuracy of Poisson approximation. Extremes 22(4), 729–748 (2019)

    Article  MathSciNet  Google Scholar 

  • Presman, E.L.: On Poisson approximation in total variation for a sum of independent Bernoulli random variables. Theory Probab. Appl. 30(2), 391–396 (1985)

    MATH  Google Scholar 

  • Prokhorov, Y.V.: Asymptotic behavior of the binomial distribution. Uspehi Matem. Nauk 83(55), 135–142 (1953)

    MathSciNet  MATH  Google Scholar 

  • Roos, B.: Sharp constants in the Poisson approximation. Statist Probab. Letters 52, 155–168 (2001)

    Article  MathSciNet  Google Scholar 

  • Salvemini, T.: Sul calcolo degli indici di concordanza tra due caratteri quantitativi. Atti della VI Riunione della Soc. Ital. di Statistica (1943)

  • Szulga, A.: On minimal metrics in the space of random variables. Theory Probab. Appl. 27(2), 401–405 (1982)

    MathSciNet  MATH  Google Scholar 

  • Stein, C.: A way of using auxiliary randomization. In: Probability Theory. Proc. Singapore Probab. Conf., pp. 159–180. Berlin: de Gruyter (1992)

  • Tyurin, I.S.: Some optimal bounds in the central limit theorem using zero biasing. — Statist. Probab. Letters 82, 514–518 (2012)

    Article  MathSciNet  Google Scholar 

  • Vallander, S.S.: Calculation of the Wasserstein distance between probability distributions on the line. Theory Probab. Appl. 18(4), 824–827 (1973)

    MathSciNet  MATH  Google Scholar 

  • Vasershtein, L.N.: Markov processes on a countable product of spaces describing large automated systems. Probl. Inform. Trans. 14, 64–73 (1969)

    MathSciNet  Google Scholar 

  • Witte, H.J.: A unification of some approaches to Poisson approximation. J. Appl. Probab. 27(3), 611–621 (1990)

    Article  MathSciNet  Google Scholar 

  • Zaitsev, A.Yu.: On the accuracy of approximation of distributions of sums of independent random variables which are nonzero with a small probability by means of accompanying laws. Probab. Theory. Appl. 28(4), 657–669 (1983)

    MATH  Google Scholar 

Download references

Acknowledgments

The author is grateful to the reviewers for helpful remarks

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.Y. Novak.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novak, S. Poisson approximation in terms of the Gini–Kantorovich distance. Extremes 24, 67–84 (2021). https://doi.org/10.1007/s10687-020-00392-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-020-00392-1

Keywords

Mathematics Subject Classification 2010

Navigation