Skip to main content
Log in

On High-order Hypoplastic Models for Granular Materials

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Granular materials show a wealth of interesting phenomena such as fluid-like behaviour and scale dependence. The description of these phenomena lies beyond the capability of conventional constitutive models. The paper discusses some high-order models within the framework of hypoplasticity. The high-order models are formulated by including the temporal and spatial derivatives of strain rate into the constitutive equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodman M.A., Cowin S.C. (1971) Two problems in the gravity flow of granular materials. J. Fluid Mech. 45: 321–339

    Article  ADS  MATH  Google Scholar 

  2. Kolymbas D. (1991) An outline of hypoplasticity. Ing. Arch. 61: 143–151

    MATH  Google Scholar 

  3. Chambon R., Desrues J., Charlier R., Hammad W. (1994) Cloe, a new rate type constitutive model for geomaterials, theoretical basis and implementation. Int. J. Numer. Anal. Methods Geomech. 18: 253–278

    Article  MATH  Google Scholar 

  4. Darve F., Flavigny E., Meghachou M. (1995) Yield surfaces and principle of superposition: revisit through incrementally non-linear constitutive relations. Int. J. Plasticity 11: 927–948

    Article  MATH  Google Scholar 

  5. Gudehus G. (1996) A comprehensive constitutive equation for granular materials. Soils and Foundations 36: 1–12

    Google Scholar 

  6. Wu W., Kolymbas D. (2000). Hypoplasticity then and now. In: Kolymbas D. (eds). Constitutive Modelling of Granular Materials. Springer Verlag, Heidelberg, pp. 57–105

    Google Scholar 

  7. Tamagnini C., Viggiani C., Chambon R. (2000) A review of two different approaches to hypoplasticity. In: Kolymbas D. (eds). Constitutive Modelling of Granular Materials. Springer Verlag, Heidelberg, pp. 107–145

    Google Scholar 

  8. Wu W., Kolymbas D. (1990) Numerical testing of the stability criterion for hypoplastic constitutive equations. Mech. Mater. 9: 245–253

    Article  Google Scholar 

  9. Truesdell C., Noll W. (1965). The non-linear field theories of mechanics. In: Flügge S. (eds). Handbuch der Physik III/c. Springer Verlag, Heidelberg, pp. 1–602

    Google Scholar 

  10. Wang C.C. (1970) A new representation theorem for isotropic functions, Parts I and II. Arch. Rational Mech. Anal. 36: 166–223

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Goldscheider M. (1982). True triaxial tests on dense sand. In: Gudehus G., Darve F., Vardoulakis I. (eds). Proceedings Int. Workshop on Constitutive Relations for Soils. A.A. Balkema, Rotterdam, pp. 11–54

    Google Scholar 

  12. Chu J., Lo S.C.R. (1994) Asymptotic behaviour of a granular soil in strain path testing. Géotechnique 44: 65–82

    Google Scholar 

  13. Hill R. (1987) On a class of constitutive relations for nonlinear infinitesimal elasticity. J. Mech. Phys. Solids 35: 565–576

    Article  ADS  MATH  Google Scholar 

  14. Wu W., Bauer E. (1994) A simple hypoplastic constitutive model for sand. Int. J. Numer. Anal. Methods Geomech. 18: 833–862

    Article  MATH  Google Scholar 

  15. Hill J.M. (2000) Similarity ‘hot-spot’ solutions for a hypoplastic granular material. Proc. R. Soc. London A 456: 2653–2671

    ADS  MATH  Google Scholar 

  16. Hill J.M., Williams K.A. (2000) Dynamic uniaxial compaction of a hypoplastic granular material. Mech. Mater. 32: 679–691

    Article  Google Scholar 

  17. Julien P.Y., Lan Y. (1991) Rheology of hyperconcentrations. J. Hydraulic Eng. ASCE 117: 346–353

    Article  Google Scholar 

  18. Mohan L.S., Nott P.R., Rao K.K. (2001) Fully developed flow of coarse granular materials through a vertical channel. Int. J. Nonlinear Mech. 36: 637–648

    Article  Google Scholar 

  19. Bagnold R.A. (1954) Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. London A 225: 49–63

    Article  ADS  Google Scholar 

  20. Savage S.B., McKeown S. (1983) Shear stresses developed during rapid shear of concentrated suspensions of large spherical particles between concentrated cylinders. J. Fluid Mech. 127: 453–472

    Article  ADS  Google Scholar 

  21. Hanes D.M., Inman D.L. (1985) Observations of rapidly flowing granular-fluid materials. J. Fluid Mech. 150: 357–380

    Article  ADS  Google Scholar 

  22. Wang Y., Hutter K. (2001). Granular material theory revisited. In: Balmforth N.J., Provenzale A. (eds). Geomorphological Fluid Mechanics. Springer Verlag, Heidelberg, pp. 79–107

    Chapter  Google Scholar 

  23. Goodman M.A., Cowin S.C. (1972) A continuum theory for granular materials. Arch. Rational Mech. Anal. 44: 249–266

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Massoudi M., Boyle E.J. (2001) A continuum-kinetic theory approach to rapid flow of granular materials: the effect of volume fraction gradient. Int. J. Nonlinear Mech. 36: 637–648

    Article  MATH  Google Scholar 

  25. Oldroyd J.G. (1956). Non-Newtonian flow of liquids and solids. In: Eirich F.R. (eds). Rheology Theory and Applications, Vol. 1. Academic Press, New York and London Chapter 16

    Google Scholar 

  26. D. Kolymbas, Eine konstitutive Theorie für Böden und andere körnige Stoffe. Publication of the Institute of Soil Mechanics and Rock Mechanics, Karlsruhe University, No. 109 (1988) 123 pp.

  27. Wu W., Bauer E., Kolymbas D. (1996) Hypoplastic constitutive model with critical state for granular materials. Mech. Mater. 23: 45–69

    Article  Google Scholar 

  28. Shibata M., Mei C.C. (1986) Slow parallel flows in a water-granule mixture under gravity, Part I: continuum modelling. Acta Mech. 63: 179–193

    Article  MATH  Google Scholar 

  29. Mühlhaus H.B., Vardoulakis I. (1987) The thickness of shear bands in granular materials. Géotechnique 37: 271–283

    Article  Google Scholar 

  30. Huang W.X., Nübel K., Bauer E. (2002) Polar extension of a hypoplastic model for granular materials with shear localization. Mech. Mater. 34: 563–576

    Article  Google Scholar 

  31. Fleck N.A., Hutchinson J.W. (1993) A phenomenological theory for strain gradient effect in plasticity. J. Mech. Phy. Solids 41: 1825–1857

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Gao H., Huang Y., Nix W.D., Hutchinson J.W. (1999) Mechanism-based strain gradient plasticity – I. Theory. J. Mech. Phy. Solids 47: 1239–1263

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Aifantis E.C. (1987) The physics of plastic deformation. Int. J. Plasticity 3: 211–247

    Article  MATH  Google Scholar 

  34. Vardoulakis I., Aifantis E.C. (1991) A gradient flow theory of plasticity for granular materials. Acta Mech. 87: 197–217

    Article  MathSciNet  MATH  Google Scholar 

  35. Bassani J.L. (2001) Incompatibility and a simple gradient theory of plasticity. J. Mech. Phys. Solids 49: 1983–1996

    Article  ADS  MATH  Google Scholar 

  36. Maier T. (2004) Comparison of non-local and polar modelling of softening in hypoplasticity. Int. J. Numer. Anal. Methods Geomech. 28: 251–268

    Article  MATH  Google Scholar 

  37. Tejchman J. (2004) Comparative FE-studies of shear localizations in granular bodies within a polar and nonlocal hypoplasticity. Mech. Research Comm. 31: 341–354

    Article  MATH  Google Scholar 

  38. Joseph D.D., Saut J.C. (1990) Short-wave instabilities and ill-posed initial-value problems. Theoret. Comput. Fluid Dynamics 1: 191–227

    Article  ADS  MATH  Google Scholar 

  39. Schaeffer D. (1990) Instability and ill-posedness in the deformation of granular materials. Int. J. Numer. Anal. Methods Geomech. 14: 253–278

    Article  MathSciNet  MATH  Google Scholar 

  40. Hill R. (1962) Acceleration waves in solids. J. Mech. Phys. Solids 10: 1–16

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Loret B., Prevost J.H., Harireche O. (2003) Loss of hyperbolicity in elastic-plastic solids with deviatoric associativity. Eur. J. Mech. A/Solids 9: 225–231

    MathSciNet  Google Scholar 

  42. Bigoni D. (1995) On flutter instability in elastoplastic constitutive models. Int. J. Solids Struct. 32: 3167–3189

    Article  MathSciNet  MATH  Google Scholar 

  43. Wu W. (2000) Non-inear analysis of shear band formation in sand. Int. J. Numer. Anal. Methods Geomech. 24: 245–263

    Article  MATH  Google Scholar 

  44. Desrues J., Chambon R. (2002) Shear band analysis and shear moduli calibration. Int. J. Solids Struct. 39: 3757–3776

    Article  MATH  Google Scholar 

  45. Bauer E., Huang W.X., Wu W. (2004) Investigation of shear banding in an anisotropic hypoplastic material. Int. J. Solids Struct. 41: 5903–5919

    Article  MATH  Google Scholar 

  46. Mühlhaus H.B., Aifantis E.C. (1991) A variational principle for gradient plasticity. Int. J. Solids Struct. 28: 845–857

    Article  MATH  Google Scholar 

  47. Aifantis E.C. (2003) Update on a class of gradient theories. Mech. Mater. 35: 259–280

    Article  Google Scholar 

  48. Niordson C.F., Hutchinson J.W. (2003) On lower order strain gradient plasticity theories. Eur. J. Mech. A/Solids 22: 771–778

    Article  MATH  ADS  Google Scholar 

  49. Tejchman J., Gudehus G. (2001) Shearing of a narrow granular layer with polar quantities. Int. J. Numer. Anal. Methods Geomech. 25: 1–28

    Article  MATH  Google Scholar 

  50. Savage S.B., Hutter K. (1989) The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199: 177–215

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Cummins S.J., Brackbill J.U. (2002) An implicit Particle-in-Cell Method for granular materials. J. Comp. Phys. 180: 506–548

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wu.

Additional information

Professor Wei Wu’s paper was originally scheduled for the Special Issue on the Mathematics and Mechanics of Granular Materials (Vol. 52 (2005) pp. 1–320).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, W. On High-order Hypoplastic Models for Granular Materials. J Eng Math 56, 23–34 (2006). https://doi.org/10.1007/s10665-006-9040-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-006-9040-7

Keywords

Navigation