Skip to main content
Log in

Initial response of a micro-polar hypoplastic material under plane shearing

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract.

The behavior of an infinite strip of a micro-polar hypoplastic material located between two parallel plates under plane shearing is investigated. The evolution equation of the stress tensor and the couple-stress tensor is described using tensor-valued functions, which are nonlinear and positively homogeneous of first order in the rate of deformation and the rate of curvature. For the initial response of the sheared layer an analytical solution is derived and discussed for different micro-polar boundary conditions at the bottom and top surfaces of the layer. It is shown that polar quantities appear within the shear layer from the beginning of shearing with the exception of zero couple stresses prescribed at the boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. V.K. Garga J.A. Infante Sedano (2002) ArticleTitleSteady state strength of sands in a constant volume ring shear apparatus Geotech. Testing J 25 414–421

    Google Scholar 

  2. K.H. Roscoe (1970) ArticleTitleThe influence of strains in soil mechanics, 10th Rankine Lecture Géotechnique 20 129–170

    Google Scholar 

  3. H.B. Mühlhaus I. Vardoulakis (1987) ArticleTitleThe thickness of shear bands in granular materials Geotechnique 37 271–283

    Google Scholar 

  4. M. Oda (1993) Micro-fabric and couple stress in shear bands of granular materials C.C. Thornton (Eds) Powders and Grains, 3 Balkema Rotterdam 161–167

    Google Scholar 

  5. J. Desrues R. Chambon M. Mokni F. Mazerolle (1996) ArticleTitleVoid ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography Géotechnique 46 529–546

    Google Scholar 

  6. E. Cosserat F. Cosserat (1909) Théorie des Corps Deformables Herman et fils Paris

    Google Scholar 

  7. R.D. Mindlin (1965) ArticleTitleStress functions for a Cosserat continuum Int. J. Solids Struct 1 265–271

    Google Scholar 

  8. A.C. Eringen (1976) Polar and nonlocal field theories. Continuum Physics IV Academic Press New York, San Francisco, London 274

    Google Scholar 

  9. E.C. Aifantis (1984) ArticleTitleOn the microstructural original of certain inelastic models J. Engng. Mat. Technol 106 326–334

    Google Scholar 

  10. Z.P. Bazant T.B. Belytschko T.P. Chang (1984) ArticleTitleContinuum theory for strain softening ASCE J. Engng. Mech 110 1666–1692

    Google Scholar 

  11. H.-B. Mühlhaus (1989) ArticleTitleApplication of Cosserat theory in numerical solutions of limit load problems Ingenieur Archiv 59 124–137

    Google Scholar 

  12. I. Vardoulakis E.C. Aifantis (1991) ArticleTitleA gradient flow theory of plasticity for granular materials Acta Mech 87 197–217

    Google Scholar 

  13. D. Kolymbas (1991) ArticleTitleAn outline of hypoplasticity Arch. Appl. Mech 3 143–151

    Google Scholar 

  14. F. Darve (1991) Incrementally non-linear constitutive relationships F. Darve (Eds) Geomaterials: Constitutive Equations and Modelling Elsevier Amsterdam 213–237

    Google Scholar 

  15. Y.F. Dafalias (1986) ArticleTitleBounding surface plasticity: I. Mathematical foundation and hypoplasticity J. Engng. Mech., ASCE 112 966–987

    Google Scholar 

  16. C. Truesdell W. Noll (1965) The non-linear field theories of mechanics S. Flügge (Eds) Encyclopedia of Physics III/c Springer press Heidelberg 1–602

    Google Scholar 

  17. D. Kolymbas (1988) A generalized hypoelastic constitutive law. Proc. 11th Int. Conf. Soil Mechanics and Foundation Engineering 5 Balkema Rotterdam 2626

    Google Scholar 

  18. W. Wu E. Bauer (1994) ArticleTitleA simple hypoplastic constitutive model for sand Int. J. Num. Anal. Methods Geomech 18 833–862

    Google Scholar 

  19. G. Gudehus (1996) ArticleTitleA comprehensive constitutive equation for granular materials Soils and Foundations 36 1–12

    Google Scholar 

  20. E. Bauer (1996) ArticleTitleCalibration of a comprehensive hypoplastic model for granular materials Soils and Foundations 36 13–26

    Google Scholar 

  21. P.A. Wolffersdorff Particlevon (1996) ArticleTitleA hypoplastic relation for granular materials with a predefined limit state surface Mech. Cohesive-Frictional Materials 1 251–271

    Google Scholar 

  22. W. Wu D. Kolymbas (2000) Hypoplasticity then and now D. Kolymbas (Eds) Constitutive Modelling of Granular Materials Springer Berlin, Heidelberg, Newyork 57–105

    Google Scholar 

  23. C. Tamagnini G. Viggiani R. Chambon (2000) A review of two different approaches to hypoplasticity D. Kolymbas (Eds) Constitutive Modelling of Granular Materials Springer Berlin, Heidelberg, Newyork 107–145

    Google Scholar 

  24. E. Bauer I. Herle (2000) Stationary states in hypoplasticity D. Kolymbas (Eds) Constitutive Modelling of Granular Materials Springer Berlin, Heidelberg, Newyork 167–192

    Google Scholar 

  25. J. Tejchman E. Bauer (1996) ArticleTitleNumerical simulation of shear band formation with a polar hypoplastic constitutive model Comp. Geotech 19 221–244

    Google Scholar 

  26. G. Gudehus (1998) Shear localization in simple grain skeleton with polar effect T. Adachi F. Oka A. Yashima (Eds) Proc. of the 4th Int. Workshop on Localization and Bifurcation Theory for Soils and Rocks Balkema Rotterdam 3–10

    Google Scholar 

  27. G. Gudehus (1997) Attractors, percolation thresholds and phase limits of granular soils R.P. Behringer Jenkins J.T. (Eds) Powders and Grains Balkema Rotterdam 169–183

    Google Scholar 

  28. J. Tejchman (1997) ArticleTitleModelling of shear localisation and autogeneous dynamic effects in granular bodies Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik der Universität Fridericiaca in Karlsruhe 140 353

    Google Scholar 

  29. E. Bauer W. Huang (1999) Numerical study of polar effects in shear zones G.N. Pande S. Pietruszczak H.F. Schweigers (Eds) Proc. of the 7th Int. Symp. on Num. Models in Geomechanics Balkema Rotterdam 133–138

    Google Scholar 

  30. J. Tejchman G. Gudehus (2001) ArticleTitleShearing of a narrow granular layer with polar quantities Int. J. Num. Meth. Geomech 25 1–28

    Google Scholar 

  31. W. Huang K. Nübel E. Bauer (2002) ArticleTitlePolar extension of a hypoplastic model for granular materials with shear localization Mech. Materials 34 563–576

    Google Scholar 

  32. J. Tejchman I. Herle (1999) ArticleTitleA “class A” prediction of the bearing capacity of plane strain footings on sand Soils and Foundations 39 47–60

    Google Scholar 

  33. K. Nübel R. Cudmani (2000) Examples of finite element calculations with the hypoplastic law D. Kolymbas (Eds) Constitutive Modelling of Granular Materials Springer Berlin, Heidelberg, Newyork 523–538

    Google Scholar 

  34. E. Bauer W. Huang (2001) Numerical investigation of strain localization in a hypoplstic Cosserat material under shearing C.S. Desai T. Kundu S. Harpalani D. Contractor J. Kemeny (Eds) Proc. of the 10th Int. Conf. on Computer Methods and Advances in Geomechanics Balkema Rotterdam 525–528

    Google Scholar 

  35. G. Gudehus K. Nübel (2004) ArticleTitleEvolution of shear bands in sand Géotechnique 54 187–201

    Google Scholar 

  36. J. Hill (2000) ArticleTitleSome symmetrical cavity problems for a hypoplstic granular material Q. J. Mech. Appl. Math 53 111–135

    Google Scholar 

  37. E. Bauer W. Huang (2001) Evolution of polar quantities in a granular Cosserat material under shearing H.-B. Mühlhaus A.V. Dyskin E. Pasternak (Eds) Proc. 5th Int. Workshop on Bifurcation and Localization Theory in Geomechanics Balkema Rotterdam 227–238

    Google Scholar 

  38. W. Huang (2000) Hypoplastic Modelling of Shear Localisation in Granular Materials. Dissertation Graz University of Technology Austria 107

    Google Scholar 

  39. W. Wu A. Niemunis (1996) ArticleTitleFailure criterion, flow rule and dissipation function derived from hypoplasticity Mech. Cohesive-Frictional Materials 1 145–163

    Google Scholar 

  40. W. Wu E. Bauer (1993) A hypoplastic model for barotropy and pyknotropy of granular soils D. Kolymbas (Eds) Proc. of the Int. Workshop on Modern Approaches to Plasticity Elsevier Amsterdam 225–245

    Google Scholar 

  41. W. Wu E. Bauer D. Kolymbas (1996) ArticleTitleHypoplastic constitutive model with critical state for granular materials Mech. Materials 23 45–69

    Google Scholar 

  42. W. Wu E. Bauer A. Niemunis I. Herle (1993) Visco-hypoplastic models for cohesive soils D. Kolymbas (Eds) Proc. of the Int. Workshop on Modern Approaches to Plasticity Elsevier Amsterdam 365–383

    Google Scholar 

  43. Gudehus G. 2004. Hypoplastic shear localisation in psammoids and peloids. 2nd Int. Symposium on Continuous and Discontinuous Modelling of Cohesive Frictional Materials, Publication in print.

  44. W. Wu (1998) ArticleTitleRational approach to anisotropy of sand Int. J. Num Anal. Methods in Geomech 24 921–940

    Google Scholar 

  45. E. Bauer W. Wu W. Huang (2003) Influence of initially transverse isotropy on shear banding in granular materials J.F. Labuz A. Arescher (Eds) Proc. of the Int. Workshop on Bifurcation and Instabilities in Geomechanics Balkema Rotterdam 161–172

    Google Scholar 

  46. E. Bauer W. Wu (1994) Extension of Hypoplastic Constitutive Model with Respect to Cohesive Powders H.J. Siriwardane M.M. Zadan (Eds) Proc. of the Eighth Intern. Conf. on Computer Methods and Advances in Geomechanics Balkema Rotterdam 531–536

    Google Scholar 

  47. A. Niemunis I. Herle (1997) ArticleTitleHypoplastic model for cohesionless soils with elastic strain range Mech. Cohesive-Frictional Materials 2 279–299

    Google Scholar 

  48. A.E. Green P.M. Naghdi (1965) ArticleTitleA general Theory of an elastic-plastic continuum Arch. Rat. Mech. Anal 18 251–281

    Google Scholar 

  49. W. Huang E. Bauer (2003) ArticleTitleNumerical investigations of shear localization in a micro-polar hypoplastic material Int. J. Num. Anal. Meth. Geomech 27 325–352

    Google Scholar 

  50. Matsuoka H., Nakai T. 1977. Stress-strain relationship of soil based on the ‘SMP’. Proc. of Speciality Session 9, IX Int. Conf. Soil Mech. Found. Eng., Tokyo pp. 153–162.

  51. E. Bauer (2000) ArticleTitleConditions for embedding Casagrande’s critical states into hypoplasticity Mech Cohesive-Frictional Materials 5 125–148

    Google Scholar 

  52. W. Huang E. Bauer S. Sloan (2003) ArticleTitleBehaviour of interfacial layer along granular soil-structure interfaces Struct. Engng. Mech 15 315–329

    Google Scholar 

  53. G. Gudehus (2001) Forced and spontaneous polarisation in shear zones H.-B. Mühlhaus A.V. Dyskin E. Pasternak (Eds) Proc. 5th Int. Workshop on bifurcation and Localization Theory in Geomechanics Balkema Rotterdam 45–51

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich Bauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, E. Initial response of a micro-polar hypoplastic material under plane shearing. J Eng Math 52, 35–51 (2005). https://doi.org/10.1007/s10665-004-3949-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-004-3949-5

Keywords

Navigation