Skip to main content
Log in

Radial Basis Functions with Partition of Unity Method for American Options with Stochastic Volatility

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

In this article, we price American options under Heston’s stochastic volatility model using a radial basis function (RBF) with partition of unity method (PUM) applied to a linear complementary formulation of the free boundary partial differential equation problem. RBF-PUMs are local meshfree methods that are accurate and flexible with respect to the problem geometry and that produce algebraic problems with sparse matrices which have a moderate condition number. Next, a Crank–Nicolson time discretisation is combined with the operator splitting method to get a fully discrete problem. To better control the computational cost and the accuracy, adaptivity is used in the spatial discretisation. Numerical experiments illustrate the accuracy and efficiency of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Boundary conditions in case of a call option, i.e. \(\xi =1\), can be found in Apel et al. (2001).

  2. It is well-known that an American call option equals a European call option when the underlying asset pays no dividend.

References

  • Apel, T., Winkler, G., & Wystup, U. (2001). Valuation of options in Heston’s stochastic volatility model using finite element methods. In J. Hakala & U. Wystup (Eds.), Foreign exchange risk (pp. 283–303). London: Risk Books.

    Google Scholar 

  • Babuška, I., & Melenk, J. M. (1997). The partition of unity method. International Journal for Numerical Methods in Engineering, 40(4), 727–758.

    Article  Google Scholar 

  • Ballestra, L. V., & Pacelli, G. (2011). Computing the survival probability density function in jump-diffusion models: A new approach based on radial basis functions. Engineering Analysis with Boundary Elements, 35(9), 1075–1084.

    Article  Google Scholar 

  • Ballestra, L. V., & Pacelli, G. (2012). A radial basis function approach to compute the first-passage probability density function in two-dimensional jump-diffusion models for financial and other applications. Engineering Analysis with Boundary Elements, 36(11), 1546–1554.

    Article  Google Scholar 

  • Ballestra, L. V., & Pacelli, G. (2013). Pricing European and American options with two stochastic factors: A highly efficient radial basis function approach. Journal of Economic Dynamics and Control, 37(6), 1142–1167.

    Article  Google Scholar 

  • Ballestra, L. V., & Sgarra, C. (2010). The evaluation of American options in a stochastic volatility model with jumps: An efficient finite element approach. Computers & Mathematics with Applications, 60(6), 1571–1590.

    Article  Google Scholar 

  • Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637–654.

    Article  Google Scholar 

  • Borici, A., & Lüthi, H.-J. (2002). Pricing American put options by fast solutions of the linear complementarity problem. In E. J. Kontoghiorghes, B. Rustem, & S. Siokos (Eds.), Computational methods in decision-making, economics and finance (pp. 325–338). US: Springer.

    Chapter  Google Scholar 

  • Buhmann, M. D. (2000). Radial basis functions. Acta Numerica, 9, 1–38. 01.

    Article  Google Scholar 

  • Buhmann, M. D. (2003). Radial basis functions: theory and implementations. New York: Cambridge University Press.

    Book  Google Scholar 

  • Cavoretto, R., & De Rossi, A. (2012). Spherical interpolation using the partition of unity method: An efficient and flexible algorithm. Applied Mathematics Letters, 25(10), 1251–1256.

    Article  Google Scholar 

  • Cavoretto, R., & De Rossi, A. (2014). A meshless interpolation algorithm using a cell-based searching procedure. Computers & Mathematics with Applications, 67(5), 1024–1038.

    Article  Google Scholar 

  • Chen, Y., Gottlieb, S., Heryudono, A., & Narayan, A. (2016). A reduced radial basis function method for partial differential equations on irregular domains. Journal of Scientific Computing, 66(1), 67–90.

    Article  Google Scholar 

  • Clarke, N., & Parrott, K. (1999). Multigrid for American option pricing with stochastic volatility. Applied Mathematical Finance, 6(3), 177–195.

    Article  Google Scholar 

  • Cox, J. C., Ingersoll, J. E., & Ross, S. A. (1985). A theory of the term structure of interest rates. Econometrica, 53(2), 385–408.

    Article  Google Scholar 

  • Dehghan, M., & Shokri, A. (2007). A numerical method for two-dimensional Schrödinger equation using collocation and radial basis functions. Computers & Mathematics with Applications, 54(1), 136–146.

    Article  Google Scholar 

  • Dehghan, M., & Shokri, A. (2009). Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions. Journal of Computational and Applied Mathematics, 230(2), 400–410.

    Article  Google Scholar 

  • Duan, Y. (2008). A note on the meshless method using radial basis functions. Computers & Mathematics with Applications, 55(1), 66–75.

    Article  Google Scholar 

  • Fang, F., & Oosterlee, C. W. (2011). A Fourier-based valuation method for Bermudan and barrier options under Heston’s model. SIAM Journal on Financial Mathematics, 2(1), 439–463.

    Article  Google Scholar 

  • Fasshauer, G. E. (2007). Meshfree approximation methods with Matlab. Singapore: World Scientific Publishing Co.

    Book  Google Scholar 

  • Fasshauer, G. E., Khaliq, A. Q. M., & Voss, D. A. (2004). Using meshfree approximation for multiasset American options. Journal of the Chinese Institute of Engineers, 27(4), 563–571.

    Article  Google Scholar 

  • Haentjens, T., & in ’t Hout, K. J. (2015). ADI schemes for pricing American options under the Heston model. Applied Mathematical Finance, 22(3), 207–237.

    Article  Google Scholar 

  • Hardy, R. L. (1971). Multiquadric equations of topography and other irregular surfaces. Journal of Geophysical Research, 76(8), 1905–1915.

    Article  Google Scholar 

  • Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies, 6(2), 327–343.

    Article  Google Scholar 

  • Hu, H.-Y., Li, Z.-C., & Cheng, A. H.-D. (2005). Radial basis collocation methods for elliptic boundary value problems. Computers & Mathematics with Applications, 50(1), 289–320.

    Article  Google Scholar 

  • Hull, J., & White, A. (1987). The pricing of options on assets with stochastic volatilities. The Journal of Finance, 42(2), 281–300.

    Article  Google Scholar 

  • Ikonen, S., & Toivanen, J. (2004). Operator splitting methods for American option pricing. Applied Mathematics Letters, 17(7), 809–814.

    Article  Google Scholar 

  • Ikonen, S., & Toivanen, J. (2008). Efficient numerical methods for pricing American options under stochastic volatility. Numerical Methods for Partial Differential Equations, 24(1), 104–126.

    Article  Google Scholar 

  • Ikonen, S., & Toivanen, J. (2009). Operator splitting methods for pricing American options under stochastic volatility. Numerische Mathematik, 113(2), 299–324.

    Article  Google Scholar 

  • in ’t Hout, K. J., & Foulon, S. (2010). ADI finite difference schemes for option pricing in the Heston model with correlation. International Journal of Numerical Analysis and Modeling, 7(2), 303–320.

  • Kansa, E. J. (1990a). Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics-I: surface approximations and partial derivative estimates. Computers & Mathematics with Applications, 19(8), 127–145.

    Article  Google Scholar 

  • Kansa, E. J. (1990b). Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics-II: solutions to parabolic, hyperbolic and elliptic partial differential equations. Computers & Mathematics with Applications, 19(8), 147–161.

    Article  Google Scholar 

  • Kunoth, A., Schneider, C., & Wiechers, K. (2012). Multiscale methods for the valuation of American options with stochastic volatility. International Journal of Computer Mathematics, 89(9), 1145–1163.

    Article  Google Scholar 

  • Kwok, Y. K. (1998). Mathematical models of financial derivatives. Singapore: Springer.

    Google Scholar 

  • Larsson, E., & Fornberg, B. (2003). A numerical study of some radial basis function based solution methods for elliptic PDEs. Computers & Mathematics with Applications, 46(5), 891–902.

    Article  Google Scholar 

  • Larsson, E., Gomes, S. M., Heryudono, A., & Safdari-Vaighani, A. (2013). Radial basis function methods in computational finance. In Proceedings of the 13th international conference on computational and mathematical methods in science and engineering, CMMSE 2013.

  • Merton, R. C. (1973). Theory of rational option pricing. Bell Journal of Economics and Management Science, 4(1), 141–183.

    Article  Google Scholar 

  • Oosterlee, C. W. (2003). On multigrid for linear complementary problems with application to American-style options. Electronic Transactions on Numerical Analysis, 15, 165–185.

    Google Scholar 

  • Oosterlee, C. W., Leentvaar, C. C. W., & Huang, X. (2005). Accurate American option pricing by grid stretching and high order finite differences. Technical report, DIAM, Delft University of Technology.

  • O’Sullivan, C., & O’Sullivan, S. (2013). Pricing European and American options in the Heston model with accelerated explicit finite differencing methods. International Journal of Theoretical and Applied Finance, 16(03), 1350015.

    Article  Google Scholar 

  • Powell, M. J. D. (1992). The theory of radial basis functions approximation in 1990. In W. A. Light (Ed.), Advances in numerical analysis. Vol. II. Wavelets, subdivision algorithms and radial basis functions (pp. 105–210). London: Oxford Univ. Press.

    Google Scholar 

  • Safdari-Vaighani, A., Heryudono, A., & Larsson, E. (2015). A radial basis function partition of unity collocation method for convection-diffusion equations arising in financial applications. Journal of Scientific Computing, 64(2), 341–367.

    Article  Google Scholar 

  • Seydel, R. (2009). Tools for Computational Finance (4th ed.). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Shcherbakov, V., & Larsson, E. (2016). Radial basis function partition of unity methods for pricing vanilla basket options. Computers & Mathematics with Applications, 71(1), 185–200.

    Article  Google Scholar 

  • Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 23rd ACM national conference, ACM ’68 (pp. 517 – 524). ACM: New York, NY, USA.

  • Tatari, M., & Dehghan, M. (2010). A method for solving partial differential equations via radial basis functions: Application to the heat equation. Engineering Analysis with Boundary Elements, 34(3), 206–212.

    Article  Google Scholar 

  • Tavella, D., & Randall, C. (2000). Pricing financial instruments: The finite difference method. New York: Wiley.

    Google Scholar 

  • Wendland, H. (1995). Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Advances in Computational Mathematics, 4(1), 389–396.

    Article  Google Scholar 

  • Wendland, H. (2002). Fast evaluation of radial basis functions: Methods based on partition of unity. In C. K. Chui, L. L. Schumaker, & J. Stöckler (Eds.), Approximation theory X: Wavelets, splines, and applications (pp. 473–483). Nashville: Vanderbilt University Press.

    Google Scholar 

  • Wendland, H. (2005). Scattered Data Approximation. Number 17 in Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, New York.

  • Zhu, S.-P., & Chen, W.-T. (2010). A new analytical approximation for European puts with stochastic volatility. Applied Mathematics Letters, 23(6), 687–692.

    Article  Google Scholar 

  • Zhu, S.-P., & Chen, W.-T. (2011). A predictor-corrector scheme based on the ADI method for pricing American puts with stochastic volatility. Computers & Mathematics with Applications, 62(1), 1–26.

    Article  Google Scholar 

  • Zvan, R., Forsyth, P. A., & Vetzal, K. R. (1998). Penalty methods for American options with stochastic volatility. Journal of Computational and Applied Mathematics, 91(2), 199–218.

    Article  Google Scholar 

Download references

Acknowledgements

The first author would like to thank the Department of Applied Mathematics, Computer Science and Statistics of Ghent University and the FWO Scientific Research Network Stochastic Modelling with Applications in Financial Markets for some financial support during his scientific research stay at that department. The authors thank professor in ’t Hout for some fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Mollapourasl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mollapourasl, R., Fereshtian, A. & Vanmaele, M. Radial Basis Functions with Partition of Unity Method for American Options with Stochastic Volatility. Comput Econ 53, 259–287 (2019). https://doi.org/10.1007/s10614-017-9739-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-017-9739-8

Keywords

Navigation