Skip to main content
Log in

Domain decomposition and partitioning methods for mixed finite element discretizations of the Biot system of poroelasticity

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We develop non-overlapping domain decomposition methods for the Biot system of poroelasticity in a mixed form. The solid deformation is modeled with a mixed three-field formulation with weak stress symmetry. The fluid flow is modeled with a mixed Darcy formulation. We introduce displacement and pressure Lagrange multipliers on the subdomain interfaces to impose weakly continuity of normal stress and normal velocity, respectively. The global problem is reduced to an interface problem for the Lagrange multipliers, which is solved by a Krylov space iterative method. We study both monolithic and split methods. In the monolithic method, a coupled displacement-pressure interface problem is solved, with each iteration requiring the solution of local Biot problems. We show that the resulting interface operator is positive definite and analyze the convergence of the iteration. We further study drained split and fixed stress Biot splittings, in which case we solve separate interface problems requiring elasticity and Darcy solves. We analyze the stability of the split formulations. Numerical experiments are presented to illustrate the convergence of the domain decomposition methods and compare their accuracy and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed, E., Nordbotten, J.M., Radu, F.A.: Adaptive asynchronous time-stepping, stopping criteria, and a posteriori error estimates for fixed-stress iterative schemes for coupled poromechanics problems. J. Comput. Appl. Math. 364(25), 112312 (2020)

    Article  Google Scholar 

  2. Ahmed, E., Radu, F.A., Nordbotten, J.M.: Adaptive poromechanics computations based on a posteriori error estimates for fully mixed formulations of Biot’s consolidation model. Comput. Methods Appl. Mech Engrg. 347, 264–294 (2019)

    Article  Google Scholar 

  3. Almani, T., Kumar, K., Dogru, A., Singh, G., Wheeler, M.F.: Convergence analysis of multirate fixed-stress split iterative schemes for coupling flow with geomechanics. Comput. Methods Appl. Mech. Engrg. 311, 180–207 (2016)

    Article  Google Scholar 

  4. Alzetta, G., Arndt, D., Bangerth, W., Boddu, V., Brands, B., Davydov, D., Gassmoeller, R., Heister, T., Heltai, L., Kormann, K., Kronbichler, M., Maier, M., Pelteret, J.-P., Turcksin, B., Wells, D.: The deal.II library, version 9.0. J. Numer. Math. 26(4), 173–183 (2018)

    Article  Google Scholar 

  5. Amara, M., Thomas, J.M.: Equilibrium finite elements for the linear elastic problem. Numer Math. 33(4), 367–383 (1979)

    Article  Google Scholar 

  6. Ambartsumyan, I., Khattatov, E., Nordbotten, J.M., Yotov, I.: A multipoint stress mixed finite element method for elasticity on quadrilateral grids. Numer. Methods Partial Differential Equations 37 (3), 1889–1915 (2021)

    Article  Google Scholar 

  7. Ambartsumyan, I., Khattatov, E., Yotov, I.: A coupled multipoint stress - multipoint flux mixed finite element method for the Biot system of poroelasticity. Comput. Methods Appl. Mech Engrg. 372, 113407 (2020)

    Article  Google Scholar 

  8. Arbogast, T., Cowsar, L.C., Wheeler, M.F., Yotov, I.: Mixed finite element methods on nonmatching multiblock grids. SIAM J. Numer Anal. 37(4), 1295–1315 (2000)

    Article  Google Scholar 

  9. Arnold, D.N., Awanou, G., Qiu, W.: Mixed finite elements for elasticity on quadrilateral meshes. Adv. Comput. Math. 41(3), 553–572 (2015)

    Article  Google Scholar 

  10. Arnold, D.N., Falk, R.S., Winther, R.: Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math Comp. 76(260), 1699–1723 (2007)

    Article  Google Scholar 

  11. Awanou, G.: Rectangular mixed elements for elasticity with weakly imposed symmetry condition. Adv. Comput. Math. 38(2), 351–367 (2013)

    Article  Google Scholar 

  12. Bangerth, W., Hartmann, R., Kanschat, G.: deal.II – a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33(4), 24/1–24/27 (2007)

    Article  Google Scholar 

  13. Bause, M., Radu, F., Kocher, U.: Space-time finite element approximation of the Biot poroelasticity system with iterative coupling. Comput. Methods Appl. Mech Engrg. 320, 745–768 (2017)

    Article  Google Scholar 

  14. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)

    Article  Google Scholar 

  15. Boffi, D., Brezzi, F., Demkowicz, L.F., Durán, R.G., Falk, R.S., Fortin, M.: Mixed Finite Elements, Compatibility Conditions, and Applications, Volume 1939 of Lecture Notes in Mathematics. Springer-Verlag, Berlin. Florence, Fondazione C.I.M.E. (2008)

    Google Scholar 

  16. Boffi, D., Brezzi, F., Fortin, M.: Reduced symmetry elements in linear elasticity. Commun Pure Appl. Anal. 8(1), 95–121 (2009)

    Article  Google Scholar 

  17. Borregales, M., Kumar, K., Radu, F.A., Rodrigo, C., Gaspar, F.J.: A partially parallel-in-time fixed-stress splitting method for Biot’s consolidation model. Comput. Math Appl. 77(6), 1466–1478 (2019)

    Article  Google Scholar 

  18. Both, J.W., Kumar, K., Nordbotten, J.M., Radu, F.A.: Anderson accelerated fixed-stress splitting schemes for consolidation of unsaturated porous media. Comput. Math Appl. 77(6), 1479–1502 (2019)

    Article  Google Scholar 

  19. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, Volume 15 of Springer Series in Computational Mathematics. Springer, New York (1991)

    Book  Google Scholar 

  20. Bukac, M., Layton, W., Moraiti, M., Tran, H., Trenchea, C.: Analysis of partitioned methods for the Biot system. Numer Methods Partial Differential Equations 31(6), 1769–1813 (2015)

    Article  Google Scholar 

  21. Cockburn, B., Gopalakrishnan, J., Guzmán, J.: A new elasticity element made for enforcing weak stress symmetry. Math Comp. 79(271), 1331–1349 (2010)

    Article  Google Scholar 

  22. Cowsar, L.C., Mandel, J., Wheeler, M.F.: Balancing domain decomposition for mixed finite elements. Math Comp. 64(211), 989–1015 (1995)

    Article  Google Scholar 

  23. Dauge, M.: Elliptic Boundary Value Problems on Corner Domains, Volume 1341 of Lecture Notes in Mathematics. Springer, Berlin (1988)

    Google Scholar 

  24. Farhloul, M., Fortin, M.: Dual hybrid methods for the elasticity and the Stokes problems: a unified approach. Numer. Math. 76(4), 419–440 (1997)

    Article  Google Scholar 

  25. Florez, H.: About revisiting domain decomposition methods for poroelasticity. Mathematics 6 (10), 187 (2018)

    Article  Google Scholar 

  26. Florez, H., Wheeler, M.: A mortar method based on NURBS for curved interfaces. Comput. Methods Appl. Mech Engrg. 310, 535–566 (2016)

    Article  Google Scholar 

  27. Gaspar, F.J., Lisbona, F.J., Vabishchevich, P.N.: A finite difference analysis of Biot’s consolidation model. Appl. Numer Math. 44(4), 487–506 (2003)

    Article  Google Scholar 

  28. Girault, V., Pencheva, G., Wheeler, M.F., Wildey, T.: Domain decomposition for poroelasticity and elasticity with DG jumps and mortars. Math. Mod. Meth. Appl. S. 21(01), 169–213 (2011)

    Article  Google Scholar 

  29. Glowinski, R., Wheeler, M.F.: Domain decomposition and mixed finite element methods for elliptic problems. In: First International Symposium on Domain Decomposition Methods for Partial Differential Equations, pp. 144–172 (1988)

  30. Gopalakrishnan, J., Guzmán, J.: A second elasticity element using the matrix bubble. IMA J. Numer Anal. 32(1), 352–372 (2012)

    Article  Google Scholar 

  31. Gosselet, P., Chiaruttini, V., Rey, C., Feyel, F.: A monolithic strategy based on an hybrid domain decomposition method for multiphysic problems Application to poroelasticity. Revue Europeenne des Elements Finis 13, 523–534 (2012)

    Google Scholar 

  32. Hu, X., Rodrigo, C., Gaspar, F.J., Zikatanov, L.T.: A nonconforming finite element method for the Biot’s consolidation model in poroelasticity. J. Comput. Appl Math. 310, 143–154 (2017)

    Article  Google Scholar 

  33. Ipsen, I.C.F.: Expressions and bounds for the GMRES residual. BIT Numer. Math. 40(3), 524–535 (2000)

    Article  Google Scholar 

  34. Kelley, C.T.: Iterative methods for linear and nonlinear equations, volume 16 of Frontiers in Applied Mathematics. Society for industrial and applied mathematics philadelphia (1995)

  35. Khattatov, E., Yotov, I.: Domain decomposition and multiscale mortar mixed finite element methods for linear elasticity with weak stress symmetry. ESAIM Math. Model. Numer. Anal. 53(6), 2081–2108 (2019)

    Article  Google Scholar 

  36. Kim, J., Tchelepi, H., Juanes, R.: Stability and convergence of sequential methods for coupled flow and geomechanics: Drained and undrained splits. Comput. Methods Appl. Mech. Engrg. 200, 2094–2116 (2011)

    Article  Google Scholar 

  37. Kim, J., Tchelepi, H., Juanes, R.: Stability and convergence of sequential methods for coupled flow and geomechanics: Fixed-stress and fixed-strain splits. Comput. Methods Appl. Mech. Engrg. 200, 1591–1606 (2011)

    Article  Google Scholar 

  38. Kovacik, J.: Correlation between Young?s modulus and porosity in porous materials. J. Mater. Sci Correlation between Lett. 18(13), 1007–1010 (1999)

    Article  Google Scholar 

  39. Lee, J.J.: Robust error analysis of coupled mixed methods for Biot’s consolidation model. J. Sci. Comput. 69(2), 610–632 (2016)

    Article  Google Scholar 

  40. Lee, J.J.: Towards a unified analysis of mixed methods for elasticity with weakly symmetric stress. Adv. Comput. Math. 42(2), 361–376 (2016)

    Article  Google Scholar 

  41. Lee, J.J.: Robust three-field finite element methods for Biot’s consolidation model in poroelasticity. BIT 58(2), 347–372 (2018)

    Article  Google Scholar 

  42. Lee, J.J., Mardal, K.-A., Winther, R.: Parameter-robust discretization and preconditioning of Biot’s consolidation model. SIAM J. Sci. Comput. 39(1), A1–A24 (2017)

    Article  Google Scholar 

  43. Mathew, T.P.: Domain decomposition and iterative refinement methods for mixed finite element discretizations of elliptic problems. PhD thesis, Courant Institute of Mathematical Sciences, New York University, 1989. Tech. Rep. 463

  44. Mikelić, A., Wheeler, M.F.: Convergence of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 17(3), 455–461 (2013)

    Article  Google Scholar 

  45. Murad, M.A., Loula, A.F.D.: Improved accuracy in finite element analysis of Biot’s consolidation problem. Comput. Methods Appl. Mech Engrg. 95(3), 359–382 (1992)

    Article  Google Scholar 

  46. Nordbotten, J.M.: Stable cell-centered finite volume discretization for Biot equations. SIAM J. Numer. Anal. 54(2), 942–968 (2016)

    Article  Google Scholar 

  47. Oyarzúa, R., Ruiz-Baier, R.: Locking-free finite element methods for poroelasticity. SIAM J. Numer Anal. 54(5), 2951–2973 (2016)

    Article  Google Scholar 

  48. Phillips, P.J., Wheeler, M.F.: A coupling of mixed and continuous Galerkin finite element methods for poroelasticity. I. The continuous in time case. Comput. Geosci. 11(2), 131–144 (2007)

    Article  Google Scholar 

  49. Phillips, P.J., Wheeler, M.F.: A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity. Comput. Geosci. 12(4), 417–435 (2008)

    Article  Google Scholar 

  50. Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Clarendon Press, Oxford (1999)

    Google Scholar 

  51. Rodrigo, C., Gaspar, F.J., Hu, X., Zikatanov, L.T.: Stability and monotonicity for some discretizations of the Biot’s consolidation model. Comput. Methods Appl. Mech. Engrg. 298, 183–204 (2016)

    Article  Google Scholar 

  52. Rodrigo, C., Hu, X., Ohm, P., Adler, J.H., Gaspar, F.J., Zikatanov, L.T.: New stabilized discretizations for poroelasticity and the Stokes’ equations. Comput. Methods Appl. Mech. Engrg. 341, 467–484 (2018)

    Article  Google Scholar 

  53. Showalter, R.E.: Diffusion in poro-elastic media. J. Math. Anal. Appl. 251(1), 310–340 (2000)

    Article  Google Scholar 

  54. Starke, G.: Field-of-values analysis of preconditioned iterative methods for nonsymmetric elliptic problems. Numer. Math. 78(1), 103–117 (1997)

    Article  Google Scholar 

  55. Stenberg, R.: A family of mixed finite elements for the elasticity problem. Numer. Math. 53(5), 513–538 (1988)

    Article  Google Scholar 

  56. Storvik, E., Both, J.W., Kumar, K., Nordbotten, J.M., Radu, F.A.: On the optimization of the fixed-stress splitting for Biot’s equations. Int. J. Numer. Methods. Eng. 120(2), 179–194 (2019)

    Article  Google Scholar 

  57. Toselli, A., Widlund, O.: Domain Decomposition Methods—Algorithms and Theory, Volume 34 of Springer Series in Computational Mathematics. Springer, Berlin (2005)

    Book  Google Scholar 

  58. Vassilev, D., Wang, C., Yotov, I.: Domain decomposition for coupled Stokes and Darcy flows. Comput. Methods. Appl. Mech. Eng. 268, 264–283 (2014)

    Article  Google Scholar 

  59. Wheeler, M.F., Xue, G., Yotov, I.: Coupling multipoint flux mixed finite element methods with continuous Galerkin methods for poroelasticity. Comput. Geosci. 18(1), 57–75 (2014)

    Article  Google Scholar 

  60. Yi, S.-Y.: A coupling of nonconforming and mixed finite element methods for Biot’s consolidation model. Numer. Meth. Partial Differ. Equ. 29(5), 1749–1777 (2013)

    Article  Google Scholar 

  61. Yi, S.-Y.: Convergence analysis of a new mixed finite element method for Biot’s consolidation model. Numer. Meth. Partial. Differ. Equ. 30(4), 1189–1210 (2014)

    Article  Google Scholar 

  62. Yi, S.-Y.: A study of two modes of locking in poroelasticity. SIAM J. Numer. Anal. 55(4), 1915–1936 (2017)

    Article  Google Scholar 

  63. Yi, S.-Y., Bean, M.: Iteratively coupled solution strategies for a four-field mixed finite element method for poroelasticity. Int. J. Numer. Anal. Meth. Geomech. 41(2), 159–179 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Yotov.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by NSF grants DMS 1818775 and DMS 2111129.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayadharan, M., Khattatov, E. & Yotov, I. Domain decomposition and partitioning methods for mixed finite element discretizations of the Biot system of poroelasticity. Comput Geosci 25, 1919–1938 (2021). https://doi.org/10.1007/s10596-021-10091-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-021-10091-w

Keywords

Navigation