Skip to main content
Log in

Efficient gradient-based optimization for reconstructing binary images in applications to electrical impedance tomography

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

A novel and highly efficient computational framework for reconstructing binary-type images suitable for models of various complexity seen in diverse biomedical applications is developed and validated. Efficiency in computational speed and accuracy is achieved by combining the advantages of recently developed optimization methods that use sample solutions with customized geometry and multiscale control space reduction, all paired with gradient-based techniques. The control space is effectively reduced based on the geometry of the samples and their individual contributions. The entire 3-step computational procedure has an easy-to-follow design due to a nominal number of tuning parameters making the approach simple for practical implementation in various settings. Fairly straightforward methods for computing gradients make the framework compatible with any optimization software, including black-box ones. The performance of the complete computational framework is tested in applications to 2D inverse problems of cancer detection by electrical impedance tomography (EIT) using data from models generated synthetically and obtained from medical images showing the natural development of cancerous regions of various sizes and shapes. The results demonstrate the superior performance of the new method and its high potential for improving the overall quality of the EIT-based procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Parts of data generated or analyzed during this study are included in this published article. The rest data that support the findings of this study are available from the corresponding author upon request.

References

  1. Zou, Y., Guo, Z.: A review of electrical impedance techniques for breast cancer detection. Med. Eng. Phys. 25(2), 79–90 (2003)

    Article  Google Scholar 

  2. Brown, B.H.: Electrical impedance tomography (EIT): a review. J. Med. Eng. Technol. 27(3), 97–108 (2003)

    Article  Google Scholar 

  3. Adler, A., Arnold, J., Bayford, R., Borsic, A., Brown, B., Dixon, P., Faes, T.J., Frerichs, I., Gagnon, H., Gärber, Y., Grychtol, B., Hahn, G., Lionheart, W., Malik, A., Stocks, J., Tizzard, A., Weiler, N., Wolf, G.: GREIT: towards a consensus EIT algorithm for lung images. In: 9th EIT Conference 2008, 16-18 June 2008, Dartmouth, New Hampshire. CiteSeer\(^X\), Pennsylvania State University (2008)

  4. Adler, A., Holder, D.: Electrical Impedance Tomography. Methods, History, and Applications, 2nd edn. CRC Press, Boca Raton (2022)

    Google Scholar 

  5. Uhlmann, G.: Electrical impedance tomography and Calderón’s problem. Inverse Prob. 25(12), 123011 (2009)

    Article  Google Scholar 

  6. Lionheart, W.R.B.: EIT reconstruction algorithms: pitfalls, challenges and recent developments. Physiol. Meas. 25(1), 125–142 (2004)

    Article  MathSciNet  Google Scholar 

  7. Abascal, J.-F.P.J., Lionheart, W.R.B., Arridge, S.R., Schweiger, M., Atkinson, D., Holder, D.S.: Electrical impedance tomography in anisotropic media with known eigenvectors. Inverse Prob. 27(6), 1–17 (2011)

    Article  MathSciNet  Google Scholar 

  8. Cheney, M., Isaacson, D., Newell, J.C.: Electrical impedance tomography. SIAM Rev. 41(1), 85–101 (1999)

    Article  MathSciNet  Google Scholar 

  9. Calderon, A.P.: On an inverse boundary value problem. In: Seminar on Numerical Analysis and Its Applications to Continuum Physics, pp. 65–73. Soc. Brasileira de Mathematica, Rio de Janeiro (1980)

  10. Borcea, L.: Electrical impedance tomography. Inverse Prob. 18, 99–136 (2002)

    Article  MathSciNet  Google Scholar 

  11. Adler, A., Gaburro, R., Lionheart, W.: Electrical Impedance Tomography. Handbook of Mathematical Methods in Imaging, pp. 701–762. Springer, New York (2015)

  12. Bera, T.K.: Applications of electrical impedance tomography (EIT): a short review. IOP Conf. Ser. Mater. Sci. Eng. 331, 012004 (2018)

    Article  Google Scholar 

  13. Wang, Z., Yue, S., Wang, H.: Yanqiu: data preprocessing methods for electrical impedance tomography: a review. Physiol. Meas. 41(9), 09 (2020)

    Article  Google Scholar 

  14. Abdulla, U.G., Bukshtynov, V., Seif, S.: Cancer detection through electrical impedance tomography and optimal control theory: theoretical and computational analysis. Math. Biosci. Eng. 18(4), 4834–4859 (2021)

    Article  MathSciNet  Google Scholar 

  15. Koolman, P.M., Bukshtynov, V.: A multiscale optimization framework for reconstructing binary images using multilevel PCA-based control space reduction. Biomed. Phys. Eng. Express 7(2), 025005 (2021)

    Article  Google Scholar 

  16. Chun, M.M.F.M., Edwards, B.L., Bukshtynov, V.: Multiscale optimization via enhanced multilevel PCA-based control space reduction for electrical impedance tomography imaging. Comput. Math. with Appl. 157, 215–234 (2024)

  17. Arbic, P.R., II., Bukshtynov, V.: On reconstruction of binary images by efficient sample-based parameterization in applications for electrical impedance tomography. Int. J. Comput. Math. 99(11), 2272–2289 (2022)

    Article  MathSciNet  Google Scholar 

  18. Arbic II, P.R.: Optimization Framework for Reconstructing Biomedical Images by Efficient Sample-based Parameterization. M.S. Thesis, Scholarship Repository, Florida Institute of Technology (2020). http://hdl.handle.net/11141/3220

  19. Chun, M.M.F.M.: Multiscale Optimization Via Multilevel PCA-based Control Space Reduction in Applications to Electrical Impedance Tomography. M.S. Thesis, Scholarship Repository, Florida Institute of Technology (2022). http://hdl.handle.net/11141/3558

  20. Somersalo, E., Cheney, M., Isaacson, D.: Existence and uniqueness for electrode models for electric current computed tomography. SIAM J. Appl. Math. 52(4), 1023–1040 (1992)

    Article  MathSciNet  Google Scholar 

  21. Hadamard, J.: Lectures on the Cauchy Problem in Linear Partial Differential Equations. Yale University Press, New Haven (1923)

    Google Scholar 

  22. Volkov, O., Bellout, M.C.: Gradient-based constrained well placement optimization. J. Petrol. Sci. Eng. 171, 1052–1066 (2018)

    Article  Google Scholar 

  23. Krogstad, S., Nilsen, H.M.: Efficient adjoint-based well-placement optimization using flow diagnostics proxies. Comput. Geosci. 26, 883–896 (2022)

    Article  MathSciNet  Google Scholar 

  24. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MathSciNet  Google Scholar 

  25. Davis, T.A.: Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. (TOMS) 30(2), 196–199 (2004)

    Article  MathSciNet  Google Scholar 

  26. Bukshtynov, V., Volkov, O., Protas, B.: On optimal reconstruction of constitutive relations. Phys. D 240(16), 1228–1244 (2011)

    Article  MathSciNet  Google Scholar 

  27. Bukshtynov, V., Protas, B.: Optimal reconstruction of material properties in complex multiphysics phenomena. J. Comput. Phys. 242, 889–914 (2013)

    Article  MathSciNet  Google Scholar 

  28. Bukshtynov, V.: Computational Optimization: Success in Practice, p. 416. Chapman and Hall/CRC, Boca Raton (2023). https://www.routledge.com/Computational-Optimization/Bukshtynov/p/book/9781032229478

  29. Gill, P.E., Murray, W., Saunders, M.A.: User’s Guide for SNOPT Version 7: Software for Large-Scale Nonlinear Programming. Stanford University, Stanford (2008)

    Google Scholar 

  30. Wachter, A., Kawajir, Y.: Introduction to Ipopt: A Tutorial for Downloading, Installing, and Using Ipopt. COIN-OR, IBM Research (2010)

  31. Svanberg, K.: The method of moving asymptotes—a new method for structural optimization. Int. J. Numer. Methods Eng. 24(2), 359–373 (1987)

    Article  MathSciNet  Google Scholar 

  32. Bassett, L.W., Conner, K., Ms, I.: The Abnormal Mammogram. Holland-Frei Cancer Medicine (2003)

  33. Weinstein, S.P.: Evolving role of MRI in breast cancer imaging. PET Clin. 4(3), 241–253 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank the anonymous reviewers for their valuable comments and suggestions to improve the clarity of the presented approach and the overall readability of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav Bukshtynov.

Ethics declarations

Conflict of interest

The authors identify no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arbic II, P.R., Bukshtynov, V. Efficient gradient-based optimization for reconstructing binary images in applications to electrical impedance tomography. Comput Optim Appl 88, 379–403 (2024). https://doi.org/10.1007/s10589-024-00553-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-024-00553-z

Keywords

Navigation