Skip to main content
Log in

Finite Rate Chemistry Effects in Highly Sheared Turbulent Premixed Flames

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Detailed scalar structure measurements of highly sheared turbulent premixed flames stabilized on the piloted premixed jet burner (PPJB) are reported together with corresponding numerical calculations using a particle based probability density function (PDF) method. The PPJB is capable of stabilizing highly turbulent premixed jet flames through the use of a small stoichiometric pilot that ensures initial ignition of the jet and a large shielding coflow of hot combustion products. Four lean premixed methane-air flames with a constant jet equivalence ratio are studied over a wide range of jet velocities. The scalar structure of the flames are examined through high resolution imaging of temperature and OH mole fraction, whilst the reaction rate structure is examined using simultaneous imaging of temperature and mole fractions of OH and CH2O. Measurements of temperature and mole fractions of CO and OH using the Raman–Rayleigh–LIF-crossed plane OH technique are used to examine the flame thickening and flame reaction rates. It is found that as the shear rates increase, finite-rate chemistry effects manifest through a gradual decrease in reactedness, rather than the abrupt localized extinction observed in non-premixed flames when approaching blow-off. This gradual decrease in reactedness is accompanied by a broadening in the reaction zone which is consistent with the view that turbulence structures become embedded within the instantaneous flame front. Numerical predictions using a particle-based PDF model are shown to be able to predict the measured flames with significant finite-rate chemistry effects, albeit with the use of a modified mixing frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Masri, A.R., Bilger, R.W., Dibble, R.W.: Turbulent nonpremixed flames of methane near extinction: mean structure from raman measurements. Combust. Flame 71, 245–226 (1988)

    Article  Google Scholar 

  2. Dally, B.B., Masri, A.R., Barlow, R.S., Fiechtner, G.J.: Instantaneous and mean compositional structure of bluff-body stabilized nonpremixed flames. Combust. Flame 114, 119–148 (1998)

    Article  Google Scholar 

  3. Masri, A.R., Kalt, P.A.M., Barlow, R.S.: The compositional structure of swirl stabilised turbulent nonpremixed flames. Combust. Flame 137, 1–37 (2004)

    Article  Google Scholar 

  4. Stårner, S.H., Bilger, R.W.: Characteristics of a piloted diffusion flame designed for study of combustion turbulence interactions. Combust. Flame 61, 29–38 (1985)

    Article  Google Scholar 

  5. Masri, A.R., Bilger, R.W.: Turbulent diffusion flames of hydrocarbon fuels stabilised on a bluff body. Proc. Combust. Inst. 20, 317–323 (1984)

    Google Scholar 

  6. Al-Abdeli, Y.M., Masri, A.R.: Stability characteristics and flowfields of turbulent non-premixed swirling flames. Combust. Theory Modelling 7, 731–766 (2003)

    Article  MATH  Google Scholar 

  7. Pope, S.B.: PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119–192 (1985)

    Article  MathSciNet  Google Scholar 

  8. Peters, N.: Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci. 10, 319–339 (1984)

    Article  Google Scholar 

  9. Klimenko, A.Y., Bilger, R.W.: Conditional moment closure for turbulent combustion. Prog. Energy Combust. Sci. 25, 595–687 (1999)

    Article  Google Scholar 

  10. Kempf, A., Sadiki, A., Janika, J.: Prediction of finite chemistry effects using large eddy simulation. Proc. Combust. Inst. 29, 1979–1985 (2002)

    Article  Google Scholar 

  11. Navarro-Martinez, S., Kronenburg, A.: LES-CMC simulations of a turbulent bluff-body flame. Proc. Combust. Inst. 31, 1721–1728 (2007)

    Article  Google Scholar 

  12. Raman, V., Pitsch, H.: A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry. Proc. Combust. Inst. 31, 1711–1719 (2007)

    Article  Google Scholar 

  13. Lipatnikov, A.N., Chomiak, J.: Turbulent flame speed and thickness: phenomenology, evaluation, and application in multi-dimensional simulations. Prog. Energy Combust. Sci. 28, 1–74 (2002)

    Article  Google Scholar 

  14. Trouve, A., Poinsot, T.: The evolution equation for the flame surface density in turbulent premixed combustion. J. Fluid Mech. 278, 1–31 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. El-Banhawy, Y., Sivasegaram, S., Whitelaw, J.H.: Premixed, turbulent combustion of a sudden-expansion flow. Combust. Flame 50, 153–165 (1983)

    Article  Google Scholar 

  16. Magre, P., Moreau, P., Collin, G., Borghi, R., Péalat, M.: Further studies by CARS of premixed turbulent combustion in a high velocity flow. Combust. Flame 71, 147–168 (1988)

    Article  Google Scholar 

  17. Frank, J.H., Kalt, P.A.M., Bilger, R.W.: Measurements of conditional velocities in turbulent premixed flames by simultaneous OH PLIF and PIV. Combust. Flame 116, 220–232 (1999)

    Article  Google Scholar 

  18. Mansour, M.S., Chen, Y.-C., Peters, N.: The reaction zone structure of turbulent premixed methane-helium-air flames near extinction. Proc. Combust. Inst. 24, 461–468 (1992)

    Google Scholar 

  19. Wu, M.S., Kwon, S., Driscoll, J.F., Faeth, G.M.: Preferential diffusion effects on the surface structure of turbulent premixed hydrogen/air flames. Combust. Sci. Technol. 78, 69–96 (1991)

    Article  Google Scholar 

  20. Bedat, B., Cheng, R.K.: Experimental study of premixed flames in intense isotropic turbulence. Combust. Flame 100, 485–494 (1995)

    Article  Google Scholar 

  21. O’Young, F., Bilger, R.W.: Measurement of scalar dissipation in premixed flames. Combust. Sci. Technol. 113, 393–411 (1996)

    Article  Google Scholar 

  22. Soika, A., Dinkelacker, F., Leipertz, A.: Measurement of the resolved flame structure of turbulent premixed flames with constant reynolds number and varied stoichiometry. Proc. Combust. Inst. 27, 785–792 (1998)

    Google Scholar 

  23. Bedat, B., Cheng, R.K.: Effects of buoyancy on premixed flame stabilization. Combust. Flame 107, 13–26 (1995)

    Article  Google Scholar 

  24. Landenfeld, T., Kremer, A., Hassel, E.P., Janicka, J., Schäfer, T., Kazenwadel, J., Schulz, C., Wolfrum, J.: Laser-diagnostic and numerical study of strongly swirling natural gas flames. Proc. Combust. Inst. 27, 1023–1029 (1998)

    Google Scholar 

  25. Bradley, D., Gaskell, P.H., Gu, X.J., Lawes, M., Scott, M.J.: Premixed turbulent flame instability and NO formation in a lean-burn swirl burner. Combust. Flame 115, 515–538 (1998)

    Article  Google Scholar 

  26. Wicksall, D.M., Agrawal, A.K., Schefer, R.W., Keller, J.O.: The interaction of flame and flow field in a lean premixed swirl-stabilized combustor operated on H2/CH4/air. Proc. Combust. Inst. 30, 2875–2883 (2005)

    Article  Google Scholar 

  27. Dinkelacker, F., Soika, A., Most, D., Hofmann, D., Leipertz, A., Polifke, W., Döbbeling, K.: Structure of locally quenched highly turbulent lean premixed flames. Proc. Combust. Inst. 27, 857–865 (1998)

    Google Scholar 

  28. O’Young, F., Bilger, R.W.: Scalar gradient and related quantities in turbulent premixed flames. Combust. Flame 109, 682–700 (1997)

    Article  Google Scholar 

  29. Mansour, M.S., Chen, Y.-C., Peters, N.: Highly strained turbulent rich methane flames stabilized by hot combustion products. Combust. Flame 116, 136–153 (1999)

    Article  Google Scholar 

  30. Chen, Y.-C., Peters, N., Schneemann, G.A., Wruck, N., Renz, U., Mansour, M.S.: The detailed flame structure of highly stretched turbulent premixed methane-air flames. Combust. Flame 107, 223–244 (1996)

    Article  Google Scholar 

  31. Cabra, R., Myhrvold, T., Chen, J.Y., Dibble, R.W., Karpetis, A.N., Barlow, R.S.: Simultaneous laser raman-rayleigh-lif measurements and numerical modeling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow. Proc. Combust. Inst. 29, 1881–1888 (2002)

    Article  Google Scholar 

  32. Dunn, M.J., Masri, A.R., Bilger, R.W.: A new piloted premixed jet burner to study strong finite-rate chemistry effects. Combust. Flame 151, 46–60 (2007)

    Article  Google Scholar 

  33. Lutz, A.E., Kee, R.J., Grcar, J.F., Rupley, F.M., OPPDIF: A Fortran Program for Computing Opposed-Flow Diffusion Flames. Tech. Rept. SAND96-8243 UC-1409, Sandia National Labs., Albuquerque, NM (1997)

  34. Kee, R.J., Grcar, J.F., Smooke, M.D., Miller, J.A.: A FORTRAN Program for Modeling Steady Laminar One-dimensional Premixed Flames. Tech. Rept. SAND85-8240, Sandia National Labs., Albuquerque, NM (1993)

  35. Kee, R.J., Rupley, F.M., Miller, J.A.: The CHEMKIN Thermodynamic Data Base. Tech. Rept. SAND87-8215B, Sandia National Labs., Albuquerque, NM (1992)

  36. Kee, R.J., Dixon-Lewis, G., Warnatz, J., Coltrin, M.E., Miller, J.A.: A FORTRAN Computer Code Package for the Evaluation of Gas-phase, Multicomponent Transport Properties. Tech. Rept. SAND86-8246, Sandia National Labs., Albuquerque, NM (1992)

  37. Smith, G.P., Golden, D.M., Frenklach, M.S., Moriarty, N.W., Eiteneer, B., Gardiner, M., Lissianski, V.V., Qin, Z.: GRI-MECH 3.0. http://www.me.berkeley.edu/gri_mech (1999)

  38. Dunn, M.J.: Finite-rate Chemistry Effects in Turbulent Premixed Combustion. PhD Thesis, AMME, The University of Sydney, Sydney (2008)

  39. Dunn, M.J., Masri, A.R., Bilger, R.W., Barlow, R.S., Wang, G.-H.: The compositional structure of highly turbulent piloted premixed flames issuing into a hot coflow. Proc. Combust. Inst. 32, 1779–1786 (2009)

    Article  Google Scholar 

  40. Masri, A.R., Bilger, R.W., Dibble, R.W.: Conditional probability density functions measured in turbulent nonpremixed flames of methane near extinction. Combust. Flame 74, 267–284 (1988)

    Article  Google Scholar 

  41. Masri, A.R., Bilger, R.W., Dibble, R.W.: Turbulent nonpremixed flames of methane near extinction; probability density functions. Combust. Flame 73, 261–285 (1988)

    Article  Google Scholar 

  42. Joedicke, A., Peters, N., Mansour, M.: The stabilisation mechanism and structure of turbulent hydrocarbon lifted flames. Proc. Combust. Inst. 30, 901–909 (2005)

    Article  Google Scholar 

  43. Böckle, S., Kazenwadel, J., Kunzelmann, T., Shin, D.-I., Schulz, C., Wolfrum, J.: Simultaneous single-shot laser-based imaging of formaldehyde, OH, and temperature in turbulent flames. Proc. Combust. Inst. 28, 279–286 (2000)

    Article  Google Scholar 

  44. Ayoola, B.O., Balachandran, R., Frank, J.H., Mastorakos, E., Kaminski, C.F.: Spatially resolved heat release rate measurements in turbulent premixed flames. Combust. Flame 144, 1–16 (2006)

    Article  Google Scholar 

  45. Fayoux, A., Zähringer, K., Gicquel, O., Rolon, J.C.: Experimental and numerical determination of heat release in counterflow premixed laminar flames. Proc. Combust. Inst. 30, 251–257 (2005)

    Article  Google Scholar 

  46. Kelman, J.B., Masri, A.R.: Simultaneous imaging of temperature and OH in turbulent diffusions flames. Combust. Sci. Technol. 122, 1–32 (1994)

    Article  Google Scholar 

  47. Frank, J.H., Kaiser, S.A., Long, M.B.: Multiscalar imaging in partially premixed jet flames with argon dilution. Combust. Flame 143, 507–523 (2005)

    Article  Google Scholar 

  48. Rehm, J.E., Paul, P.H.: Reaction rate imaging. Proc. Combust. Inst. 28, 1775–1782 (2000)

    Article  Google Scholar 

  49. Karpetis, A.N., Barlow, R.S.: Measurements of flame orientation and scalar dissipation in turbulent partially premixed methane flames. Proc. Combust. Inst. 30, 665–672 (2005)

    Article  Google Scholar 

  50. Karpetis, A.N., Settersten, T.B., Schefer, R.W., Barlow, R.S.: Laser imaging system for determination of three-dimensional scalar gradients in turbulent flames. Opt. Lett. 29, 355–357 (2004)

    Article  Google Scholar 

  51. Anand, M.S., Pope, S.B.: Calculations of premixed turbulent flames by PDF methods. Combust. Flame 67, 127–142 (1987)

    Article  Google Scholar 

  52. Pope, S.B.: Monte Carlo Calculations of Premixed Turbulent Flames. In: Proc. 18th Int. Symp. Combustion, pp. 1001–1010 (1981)

  53. Cannon, S.M., Brewster, B.S., Smoot, L.D.: PDF modeling of lean premixed combustion using in situ tabulated chemistry. Combust. Flame 119, 233–252 (1999)

    Article  Google Scholar 

  54. James, S., Anand, M.S., Razdan, M.K., Pope, S.B.: In situ detailed chemistry calculations in combustor flow analyses. ASME J. Eng. Gas Turbines Power 123, 747–756 (2001)

    Article  Google Scholar 

  55. Kuan, T.S., Lindstedt, R.P., Vaos, E.M.: Higher moment based modeling of turbulence enhanced explosion kernels in confined fuel-air mixtures. In: Roy, G. (ed.) Advances in Confined Detonations and Pulse Detonation Engines, pp. 17–40. Torus, Moscow (2003)

    Google Scholar 

  56. Lindstedt, R.P., Vaos, E.M.: Transported PDF modeling of high-Reynolds-number premixed turbulent flames. Combust. Flame 145, 495–511 (2006)

    Article  Google Scholar 

  57. Gkagkas, K., Lindstedt, R.P., Kuan, T.S.: Transported PDF modelling of a high velocity bluff-body stabilised flame (HM2) using detailed chemistry. Flow, Turbulence Combust. 82, 493–509 (2009)

    Article  MATH  Google Scholar 

  58. Gkagkas, K., Lindstedt, R.P.: The impact of reduced chemistry on auto-ignition of H2 in turbulent flows. Combust. Theory Modelling 13, 607–643 (2009)

    Article  MATH  Google Scholar 

  59. Lindstedt, R.P., Louloudi, S.A.: Joint scalar transported probability density function modeling of turbulent methanol jet diffusion flames. Proc. Combust. Inst. 29, 2147–2154 (2002)

    Article  Google Scholar 

  60. Subramaniam, S., Pope, S.B.: A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees. Combust. Flame 115, 487–514 (1998)

    Article  Google Scholar 

  61. Cao, R.R., Wang, H., Pope, S.B.: The effect of mixing models in PDF calculations of piloted jet flames. Proc. Combust. Inst. 31, 1543–1550 (2007)

    Article  Google Scholar 

  62. Kazakov, A., Frenklach, M.: Reduced reaction sets based on GRI-Mech 1.2. http://www.me.berkeley.edu/drm/ (2007)

  63. Pope, S.B.: Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust. Theory Modelling 1, 41–63 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  64. Wilcox, D.C.: Turbulence Modeling for CFD, 2nd ed. DCW, La Cañada (1998)

    Google Scholar 

  65. Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12, 1843–1863 (2000)

    Article  Google Scholar 

  66. Trouvé, A., Poinsot, T.J.: The evolution equation for the flame surface density in turbulent premixed combustion. J. Fluid Mech. 278, 1–31 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Dunn.

Additional information

Submitted to the Special Issue of Flow, Turbulence and Combustion dedicated to S.B. Pope.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunn, M.J., Masri, A.R., Bilger, R.W. et al. Finite Rate Chemistry Effects in Highly Sheared Turbulent Premixed Flames. Flow Turbulence Combust 85, 621–648 (2010). https://doi.org/10.1007/s10494-010-9280-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-010-9280-5

Keywords

Navigation