Skip to main content
Log in

The stable reconstruction of strongly-decaying block sparse signals

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

In this paper, we reconstruct strongly-decaying block sparse signals by the block generalized orthogonal matching pursuit (BgOMP) algorithm in the l2-bounded noise case. Under some restraints on the minimum magnitude of the nonzero elements of the strongly-decaying block sparse signal, if the sensing matrix satisfies the the block restricted isometry property (block-RIP), then arbitrary strongly-decaying block sparse signals can be accurately and steadily reconstructed by the BgOMP algorithm in iterations. Furthermore, we conjecture that this condition is sharp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Donoho D. Compressed sensing. IEEE Trans Inform Theory, 2006, 52: 1289–1306

    Article  MathSciNet  Google Scholar 

  2. Candes E, Tao T. Decoding by linear programming. IEEE Trans Inform Theory, 2005, 51: 4203–4215

    Article  MathSciNet  Google Scholar 

  3. Candes E, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Trans Inform Theory, 2006, 52: 5406–5425

    Article  MathSciNet  Google Scholar 

  4. Candes E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inform Theory, 2006, 52: 489–09

    Article  MathSciNet  Google Scholar 

  5. Geng J W, Yu Z, Li C S. Synthetic aperture radar increment imaging based on compressed sensing. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1–5

    Google Scholar 

  6. Imrich Andras, Pavol Dolinsky, Michaeli L. Sparse signal acquisition via compressed sensing and principal component analysis. Measurement Science Review, 2018, 9: 175–182

    Article  Google Scholar 

  7. Wang G, Niu M Y, Fu F W. Deterministic constructions of compressed sensing matrices based on codes. Cryptography and Communications, 2019, 11: 759–775

    Article  MathSciNet  Google Scholar 

  8. Bai H, Li X M. Measurement-driven framework with simultaneous sensing matrix and dictionary optimization for compressed sensing. IEEE Access, 2020, 8: 35950–35963

    Article  Google Scholar 

  9. Alberti G S, Campodonico P, Santacesaria M. Compressed sensing photoacoustic tomography reduces to compressed sensing for undersampled fourier measurements. SIAM Journal on Imaging Sciences, 2021, 14: 1039–1077

    Article  MathSciNet  Google Scholar 

  10. Eldar Y C, Mishali M. Robust recovery of signals from a structured union of subspaces. IEEE Trans Inform Theory, 2009, 55: 5302–5316

    Article  MathSciNet  Google Scholar 

  11. Chen Y T, Lin S J. Preconditioning with RIP improvement for compressed sensing systems in total noise environment. Signal Processing, 2021, 179: Art 107765

  12. Fu M, Hao J J, Xie L J, et al. Exact support recovery of sparse signals from noisy measurements. Acta Math Sci, 2021, 41A: 1555–1565

    MathSciNet  Google Scholar 

  13. Xu Y, Qiu X H. Block-sparse signals recovery using orthogonal multimatching. Signal Process, 2014, 30: 706–711

    Google Scholar 

  14. Fu Y, Li H, Zhang Q, et al. Block-sparse recovery via redundant block OMP. Signal Processing, 2014, 97: 162–171

    Article  Google Scholar 

  15. Davenport M, Wakin M. Analysis of orthogonal matching pursuit using the restricted isometry property. IEEE Trans Inform Theory, 2010, 56: 4395–4401

    Article  MathSciNet  Google Scholar 

  16. Wen J M, Zhou Z C, Liu Z L, et al. Sharp sufficient conditions for stable recovery of block sparse signals by block orthogonal matching pursuit. Appl Comput Harmon Anal, 2019, 47: 948–74

    Article  MathSciNet  Google Scholar 

  17. Qi R, Yang D, Zhang Y, et al. On recovery of block sparse signals via block generalized orthogonal matching pursuit. Signal Processing, 2018, 153: 34–46

    Article  Google Scholar 

  18. Chen W G, Ge H M. A sharp recovery condition for block sparse signals by block orthogonal multi-matching pursuit. Science China Mathematics, 2017, 60: 167–182

    Article  MathSciNet  Google Scholar 

  19. Chen W G, Ge H M. Recovery of block sparse signals under the conditions on block RIC and ROC by BOMP and BOMMP. Inverse Problems and Imaging, 2018, 12: 153–174

    Article  MathSciNet  Google Scholar 

  20. Eldar Y C, Kuppinger P, Bolcskei H. Block-sparse signals: uncertainty relations and efficient recovery. IEEE Trans Signal Process, 2010, 58: 3042–3054

    Article  MathSciNet  Google Scholar 

  21. Lai M J, Liu Y. The null space property for sparse recovery from multiple measurement vectors. Appl Comput Harmon Anal, 2011, 30: 402–406

    Article  MathSciNet  Google Scholar 

  22. Shi Y L, Wang L B, Luo R. Sparse recovery with block multiple measurement vectors algorithm. IEEE Access, 2019, 7: 9470–9475

    Article  Google Scholar 

  23. Wen J M, Zhou Z C, Li D F, et al. A novel sufficient condition for generalized orthogonal matching pursuit. IEEE Communications Letters, 2017, 21(4): 805–808

    Article  Google Scholar 

  24. Wen J M, Zhang R, Yu W. Signal-dependent performance analysis of orthogonal matching pursuit for exact sparse recovery. IEEE Trans Signal Process, 2020, 68: 5031–5046

    Article  MathSciNet  Google Scholar 

  25. Ding J, Chen L M, Gu Y T. Perturbation analysis of orthogonal matching pursuit. IEEE Trans Signal Process, 2013, 61: 398–410

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinping Wang  (王金平).

Ethics declarations

Conflict of Interest The authors declare no conflict of interest.

Additional information

This project was supported by Natural Science Foundation of China (62071262) and the K. C. Wong Magna Fund at Ningbo University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Wang, J. The stable reconstruction of strongly-decaying block sparse signals. Acta Math Sci 44, 1787–1800 (2024). https://doi.org/10.1007/s10473-024-0509-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-024-0509-0

Key words

2020 MR Subject Classification

Navigation