Skip to main content
Log in

Interface behavior and decay rates of compressible Navier-Stokes system with density-dependent viscosity and a vacuum

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

In this paper, we study the one-dimensional motion of viscous gas near a vacuum, with the gas connecting to a vacuum state with a jump in density. The interface behavior, the pointwise decay rates of the density function and the expanding rates of the interface are obtained with the viscosity coefficient μ(ρ) = ρα for any 0 < α < 1; this includes the time-weighted boundedness from below and above. The smoothness of the solution is discussed. Moreover, we construct a class of self-similar classical solutions which exhibit some interesting properties, such as optimal estimates. The present paper extends the results in [Luo T, Xin Z P, Yang T. SIAM J Math Anal, 2000, 31(6): 1175–1191] to the jump boundary conditions case with density-dependent viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fang D Y, Zhang T. Compressible Navier-Stokes equations with vacuum state in one dimension. Commun Pure Appl Anal, 2004, 3(4): 675–694

    Article  MathSciNet  MATH  Google Scholar 

  2. Fang D Y, Zhang T. Compressible Navier-Stokes equations with vacuum state in the case of general pressure law. Math Methods Appl Sci, 2006, 29(10): 1081–1106

    Article  MathSciNet  MATH  Google Scholar 

  3. Guo Z H, He W. Interface behavior of compressible Navier-Stokes equations with discontinuous boundary conditions and vacuum. Acta Math Sci, 2011, 31B(3): 934–952

    Article  MATH  Google Scholar 

  4. Guo Z H, Jiu Q S, Xin Z P. Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients. SIAM J Math Anal, 2008, 39(5): 1402–1427

    Article  MathSciNet  MATH  Google Scholar 

  5. Guo Z H, Jiang S, Xie F. Global existence and asymptotic behavior of weak solutions to the 1D compressible Navier-Stokes equations with degenerate viscosity coefficient. Asymptot Anal, 2008, 60(1/2): 101–123

    MathSciNet  MATH  Google Scholar 

  6. Guo Z H, Zhu C J. Remarks on one-dimensional compressible Navier-Stokes equations with density-dependent viscosity and vacuum. Acta Math Sin Engl Ser, 2009, 26(10): 2015–2030

    Article  MathSciNet  MATH  Google Scholar 

  7. Guo Z H, Zhu C J. Global weak solutions and asympotic behavior to 1D compressible Navier-Stokes equations with density-dependent viscosity and vacuum. J Differential Equations, 2010, 248(11): 2768–2799

    Article  MathSciNet  MATH  Google Scholar 

  8. Guo Z H, Xin Z P. Analytical solutions to the compressible Navier-Stokes equations with density-dependent viscosity coefficients and free boundaries. J Differential Equations, 2012, 253(1): 1–19

    Article  MathSciNet  MATH  Google Scholar 

  9. Hoff D. Global existence for 1D, compressible, isentropic Navier-Stokes equations with large initial data. Trans Amer Math Soc, 1987, 303(1): 169–181

    Article  MathSciNet  MATH  Google Scholar 

  10. Hoff D, Serre D. The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow. SIAM J Appl Math, 1991, 51(4): 887–898

    Article  MathSciNet  MATH  Google Scholar 

  11. Hoff D, Liu T P. The inviscid limit for the Navier-Stokes equations of compressible isentropic flow with shock data. Indiana Univ Math J, 1989, 38(4): 861–915

    Article  MathSciNet  MATH  Google Scholar 

  12. Hong G Y, Zhu C J. Optimal decay rates on compressible Navier-Stokes equations with degenerate viscosity and vacuum. J Math Pures Appl, 2019, 124(9): 1–29

    Article  MathSciNet  MATH  Google Scholar 

  13. Jiang S. Global smooth solutions of the equations of a viscous, heat-conducting one-dimensional gas with density-dependent viscosity. Math Nachr, 1998, 190(1): 169–183

    Article  MathSciNet  MATH  Google Scholar 

  14. Jiang S, Xin Z P, Zhang P. Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity. Methods Appl Anal, 2005, 12(3): 239–251

    Article  MathSciNet  MATH  Google Scholar 

  15. Kawashima S, Nishida T. Global solutions to the initial value problem for the equations of one-dimensional motion of viscous polytrpic gases. J Math Kyoto Univ, 1981, 21(4): 825–837

    MathSciNet  MATH  Google Scholar 

  16. Ladyzhenskaia O, Solonnikov V, Ural’tseva N. Linear and Quasi-linear Equations of Parabolic Type. Providence: Amer Math Soc, 1968

    Book  Google Scholar 

  17. Luo T, Xin Z P, Yang T. Interface behavior of compressible Navier-Stokes equations with vacuum. SIAM J Math Anal, 2000, 31(6): 1175–1191

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu T P, Xin Z P, Yang T. Vacuum states of compressible flow. Discrete Contin Dyn Syst, 1998, 4(1): 1–32

    Article  MathSciNet  MATH  Google Scholar 

  19. Makina T. On a local existence theorem for the evolution equations of gaseous stars. Stud Appl Math, 1986, 18: 459–479

    MathSciNet  Google Scholar 

  20. Nishida T. Equations of fluid dynamics-free surface problems. Comm Pure Appl Math, 1986, 39(S1): 221–238

    Article  MathSciNet  MATH  Google Scholar 

  21. Okada M, Matušu-Nečasová Š, Makino T. Free boundary problem for the equation of one dimensional motion of compressible gas with density-dependent viscosity. Ann Univ Ferrara Sez VII Sci Mat, 2002, 48(1): 1–20

    Article  MathSciNet  MATH  Google Scholar 

  22. Okada M. Free boundary problem for the equation of one dimensional motion of viscous gas. Japan J Appl Math, 1989, 6(1): 161–177

    Article  MathSciNet  MATH  Google Scholar 

  23. Okada M, Makino T. Free boundary problem for the equation of spherically symmetrical motion of viscous gas. Japan J Appl Math, 1993, 10(2): 219–235

    Article  MathSciNet  MATH  Google Scholar 

  24. Qin X L, Yao Z A, Zhao H Z. One dimensional compressible Navier-Stokes equations with density-dependent viscosity and free boundaries. Comm Pure Appl Anal, 2008, 7(2): 373–381

    Article  MathSciNet  MATH  Google Scholar 

  25. Vong S W, Yang T, Zhu C J. Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum II. J Differential Equations, 2003, 192(2): 475–501

    Article  MathSciNet  MATH  Google Scholar 

  26. Xin Z P. Zero dissipation limit to rarefaction waves for one-dimensional Navier-Stokes equations for compressible isentropic gases. Comm Pure Appl Math, 1993, 46(5): 621–665

    Article  MathSciNet  MATH  Google Scholar 

  27. Xin Z P. Blow-up of smooth solutions to the comprssible Navier-Stokes equation with compact density. Comm Pure Appl Math, 1998, 51(3): 229–240

    Article  MathSciNet  Google Scholar 

  28. Yang T, Zhao H J. A vacuum problem for the one-dimensional compressible Navier-Stokes equations with density-dependent viscocity. J Diffrential Equations, 2002, 184(1): 163–184

    Article  MATH  Google Scholar 

  29. Yang T, Yao Z A, Zhu C J. Compressible Navier-Stokes equations with density-dependent viscosity and vacuum. Comm Partial Differential Equations, 2001, 26(5/6): 965–981

    Article  MathSciNet  MATH  Google Scholar 

  30. Yuen M W. Analytical solutions to the Navier-Stokes equations. J Math Phys, 2008, 49(11): 113102

    Article  MathSciNet  MATH  Google Scholar 

  31. Yuen M W. Analytical blowup solutions to the 2-dimensional isothermal Euler-Poisson equations of gaseous stars. J Math Anal Appl, 2008, 341(1): 445–456

    Article  MathSciNet  MATH  Google Scholar 

  32. Yeung L H, Yuen M W. Analytical solutions to the Navier-Stokes equations with density-dependent viscosity and with pressure. J Math Phys, 2009, 50(8): 083101

    Article  MathSciNet  MATH  Google Scholar 

  33. Yang T, Zhu C J. Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum. Comm Math Phys, 2002, 230(2): 329–363

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhu C J. Asymptotic behavior of compressible Navier-Stokes equations with density-dependent viscosity and vacuum. Comm Math Phys, 2010, 293(1): 279–299

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueyao Zhang.

Ethics declarations

Conflict of Interest The authors declare no conflict of interest.

Additional information

This work was supported by the NSFC (11931013) and the GXNSF (2022GXNSFDA035078).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Zhang, X. Interface behavior and decay rates of compressible Navier-Stokes system with density-dependent viscosity and a vacuum. Acta Math Sci 44, 247–274 (2024). https://doi.org/10.1007/s10473-024-0114-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-024-0114-2

Key words

2020 MR Subject Classification

Navigation