Skip to main content
Log in

Lump and Interaction Solutions to Linear (4+1)-Dimensional PDEs

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

Taking a class of linear (4+1)-dimensional partial differential equations as examples, we would like to show that there exist lump solutions and interaction solutions in (4+1)-dimensions. We will compute abundant lump solutions and interaction solutions to the considered linear (4+1)-dimensional partial differential equations via symbolic computations, and plot three specific solutions with Maple plot tools, which supplements the existing literature on lump, rogue wave and breather solutions and their interaction solutions in soliton theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ince E L. Ordinary Differential Equations. Mineola, NY: Dover, 1956

    Google Scholar 

  2. Evans L C. Partial Differential Equations. Providence, RI: American Mathematical Society, 1998

    MATH  Google Scholar 

  3. Novikov S, Manakov S V, Pitaevskii, L P, Zakharov V E. Theory of Solitons–the Inverse Scattering Method. New York: Consultants Bureau, 1984

    MATH  Google Scholar 

  4. Ablowitz M J, Clarkson P A. Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge: Cambridge University Press, 1991

    Book  MATH  Google Scholar 

  5. Ma W X, Zhou Y. Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J Diff Eqn, 2018, 264(4): 2633–2659

    Article  MathSciNet  MATH  Google Scholar 

  6. Ma W X, Zhou Y, Dougherty R. Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations. Int J Mod Phys B, 2016, 30(28/29): 1640018

    Article  MathSciNet  MATH  Google Scholar 

  7. Tan W, Dai H P, Dai Z D, Zhong W Y. Emergence and space-time structure of lump solution to the (2+1)-dimensional generalized KP equation. Pramana J Phys, 2017, 89(5): 77

    Article  Google Scholar 

  8. Satsuma J, Ablowitz M J. Two-dimensional lumps in nonlinear dispersive systems. J Math Phys, 1979, 20(7): 1496–1503

    Article  MathSciNet  MATH  Google Scholar 

  9. Ma W X. Wronskian solutions to integrable equations. Discrete Contin Dynam Syst, 2009, (Suppl): 506–515

    Google Scholar 

  10. Wazwaz A-M, El-Tantawy S A. New (3+1)-dimensional equations of Burgers type and Sharma-Tasso-Olver type: multiple-soliton solutions. Nonlinear Dynam, 2017, 87(4): 2457–2461

    Article  MathSciNet  MATH  Google Scholar 

  11. Ma W X, You Y. Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions. Trans Amer Math Soc, 2005, 357(5): 1753–1778

    Article  MathSciNet  MATH  Google Scholar 

  12. Ma W X. Lump solutions to the Kadomtsev-Petviashvili equation. Phys Lett A, 2015, 379(36): 1975–1978

    Article  MathSciNet  MATH  Google Scholar 

  13. Kaup D J. The lump solutions and the Bäcklund transformation for the three-dimensional three-wave resonant interaction. J Math Phys, 1981, 22(6): 1176–1181

    Article  MathSciNet  MATH  Google Scholar 

  14. Gilson C R, Nimmo J J C. Lump solutions of the BKP equation. Phys Lett A, 1990, 147(8/9): 472–476

    Article  MathSciNet  Google Scholar 

  15. Yang J Y, Ma W X. Lump solutions of the BKP equation by symbolic computation. Int J Mod Phys B, 2016, 30(28/29): 1640028

    Article  MathSciNet  MATH  Google Scholar 

  16. Imai K. Dromion and lump solutions of the Ishimori-I equation. Prog Theor Phys, 1997, 98(5): 1013–1023

    Article  Google Scholar 

  17. Zhang Y, Dong H H, Zhang X E, Yang H W. Rational solutions and lump solutions to the generalized (3+1)-dimensional shallow water-like equation. Comput Math Appl, 2017, 73(2): 246–252

    Article  MathSciNet  MATH  Google Scholar 

  18. Ma W X, Qin Z Y, Lü X. Lump solutions to dimensionally reduced p-gKP and p-gBKP equations. Nonlinear Dynam, 2016, 84(2): 923–931

    Article  MathSciNet  MATH  Google Scholar 

  19. Lü X, Chen S T, Ma W X. Constructing lump solutions to a generalized Kadomtsev-Petviashvili-Boussinesq equation. Nonlinear Dynam, 2016, 86(1): 523–534

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang H Q, Ma W X. Lump solutions to the (2+1)-dimensional Sawada-Kotera equation. Nonlinear Dynam, 2017, 87(4): 2305–2310

    Article  MathSciNet  Google Scholar 

  21. Yu J P, Sun Y L. Study of lump solutions to dimensionally reduced generalized KP equations. Nonlinear Dynam, 2017, 87(4): 2755–2763

    Article  MathSciNet  Google Scholar 

  22. Tang Y N, Tao S Q, Qing G. Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations. Comput Math Appl, 2016, 72(9): 2334–2342

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhao H Q, Ma W X. Mixed lump-kink solutions to the KP equation. Comput Math Appl, 2017, 74(6): 1399–1405

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang J B, Ma W X. Mixed lump-kink solutions to the BKP equation. Comput Math Appl, 2017, 74(3): 591–596

    Article  MathSciNet  MATH  Google Scholar 

  25. Kofane T C, Fokou M, Mohamadou A, Yomba E. Lump solutions and interaction phenomenon to the third-order nonlinear evolution equation. Eur Phys J Plus, 2017, 132(11): 465

    Article  Google Scholar 

  26. Yang J Y, Ma W X. Abundant interaction solutions of the KP equation. Nonlinear Dynam, 2017, 89(2): 1539–1544

    Article  MathSciNet  Google Scholar 

  27. Yang J Y, Ma W X, Qin Z Y. Lump and lump-soliton solutions to the (2+1)-dimensional Ito equation. Anal Math Phys, 2018, 8(3): 427–436

    Article  MathSciNet  MATH  Google Scholar 

  28. Ma W X, Yong X L, Zhang H Q. Diversity of interaction solutions to the (2+1)-dimensional Ito equation. Comput Math Appl, 2018, 75(1): 289–295

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang Y J, Ma W X, Qin Z Y. Abundant mixed lump-soliton solutions of the BKP equation. East Asian J Appl Math, 2018, 8(2): 224–232

    Article  MathSciNet  Google Scholar 

  30. Ma W X. Lump-type solutions to the (3+1)-dimensional Jimbo-Miwa equation. Int J Nonlinear Sci Numer Simulat, 2016, 17(7/8): 355–359

    MathSciNet  MATH  Google Scholar 

  31. Yang J Y, Ma W X. Abundant lump-type solutions of the Jimbo-Miwa equation in (3+1)-dimensions. Comput Math Appl, 2017, 73(2): 220–225

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang Y, Sun S L, Dong H H. Hybrid solutions of (3+1)-dimensional Jimbo-Miwa equation. Math Probl Eng, 2017, 2017: Article ID 5453941

    Google Scholar 

  33. Roshid-Harun-Or, Ali M Z. Lump solutions to a Jimbo-Miwa like equation. arXiv:1611.04478, 2016

  34. Dorizzi B, Grammaticos B, Ramani A, Winternitz P. Are all the equations of the Kadomtsev-Petviashvili hierarchy integrable? J Math Phys, 1986, 27(12): 2848–2852

    Article  MathSciNet  MATH  Google Scholar 

  35. Konopelchenko B, Strampp W. The AKNS hierarchy as symmetry constraint of the KP hierarchy. Inverse Probl, 1991, 7(2): L17–L24

    Article  MathSciNet  MATH  Google Scholar 

  36. Li X Y, Zhao Q L, Li Y X, Dong H H. Binary Bargmann symmetry constraint associated with 3×3 discrete matrix spectral problem. J Nonlinear Sci Appl, 2015, 8(5): 496–506

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhao Q L, Li X Y. A Bargmann system and the involutive solutions associated with a new 4-order lattice hierarchy. Anal Math Phys, 2016, 6(3): 237–254

    Article  MathSciNet  MATH  Google Scholar 

  38. Dong H H, Zhang Y, Zhang X E. The new integrable symplectic map and the symmetry of integrable nonlinear lattice equation. Commun Nonlinear Sci Numer Simulat, 2016, 36: 354–365

    Article  MathSciNet  Google Scholar 

  39. Li X Y, Zhao Q L. A new integrable symplectic map by the binary nonlinearization to the super AKNS system. J Geom Phys, 2017, 121: 123–137

    Article  MathSciNet  MATH  Google Scholar 

  40. Ma W X. Abundant lumps and their interaction solutions of (3+1)-dimensional linear PDEs. J Geom Phys, 2018, 133: 10–16

    Article  MathSciNet  MATH  Google Scholar 

  41. Ma W X, Fan E G. Linear superposition principle applying to Hirota bilinear equations. Comput Math Appl, 2011, 61(4): 950–959

    Article  MathSciNet  MATH  Google Scholar 

  42. Xu Z H, Chen H L, Dai Z D. Rogue wave for the (2+1)-dimensional Kadomtsev-Petviashvili equation. Appl Math Lett, 2014, 37: 34–38

    Article  MathSciNet  MATH  Google Scholar 

  43. Ünsal Ö, Ma W X. Linear superposition principle of hyperbolic and trigonometric function solutions to generalized bilinear equations. Comput Math Appl, 2016, 71(6): 1242–1247

    Article  MathSciNet  Google Scholar 

  44. Ma W X. Generalized bilinear differential equations. Stud Nonlinear Sci, 2011, 2(4): 140–144

    Google Scholar 

  45. Ablowitz M J, Fokas A S. Complex Variables: Introduction and Applications. New York: Cambridge University Press, 2003

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Xiu Ma.

Additional information

The work was supported in part by NSFC (11301331, 11371086, 11571079 and 51771083), NSF under the grant DMS-1664561, Shanghai Pujiang Program (14PJD007), the Natural Science Foundation of Shanghai (14ZR1403500), Natural Science Fund for Colleges and Universities of Jiangsu Province under the grant 17KJB110020, Emphasis Foundation of Special Science Research on Subject Frontiers of CUMT under Grant No. 2017XKZD11, and the Distinguished Professorships by Shanghai University of Electric Power, China and North-West University, South Africa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, WX. Lump and Interaction Solutions to Linear (4+1)-Dimensional PDEs. Acta Math Sci 39, 498–508 (2019). https://doi.org/10.1007/s10473-019-0214-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-019-0214-6

Key words

2010 MR Subject Classification

Navigation