Skip to main content
Log in

Existence And Controllability For Nonlinear Fractional Control Systems With Damping in Hilbert Spaces

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with the existence of mild solution and controllability for a class of nonlinear fractional control systems with damping in Hilbert spaces. Our first step is to give the representation of mild solution for this control system by utilizing the general method of Laplace transform and the theory of (α, γ)-regularized families of operators. Next, we study the solvability and controllability of nonlinear fractional control systems with damping under some suitable sufficient conditions. Finally, two examples are given to illustrate the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arendt W, Batty C, Hieber M, Neubrander F. Vector-Valued Laplace Transforms and Cauchy Problems. Monographs in Mathematics, Vol 96. Basel: Birkhäuser, 2001

  2. Balachandran K, Govindaraj V, Reiver M, Trujillo J J. Controllability of fractional damped dynamical systems. Appl Math Comput, 2015, 257: 66–73

    MathSciNet  MATH  Google Scholar 

  3. Baleanu D, Golmankhaneh A K. On electromagnetic field in fractional space. Nonlinear Anal RWA, 2010, 11(1): 288–292

    Article  MathSciNet  MATH  Google Scholar 

  4. Curtain R F, Zwart H J. An Introduction to Infinite Dimensional Linear Systems Theorem. New York: Springer-Verlag, 1995

    Book  MATH  Google Scholar 

  5. Debbouche A, Torres D F M. Approximate controllability of fractional delay dynamic inclusions with nonlocal control conditions. Appl Math Comput, 2014, 243: 161–175.

    MathSciNet  MATH  Google Scholar 

  6. Galucio A C, Deu J F, Ohayon R. A fractional derivative viscoelastic model for hybrid active-passive damping treatments in time domain-application to sandwich beams. J Intell Mater Syst Struct, 2005, 16(1): 33–45

    Article  Google Scholar 

  7. Heymans N, Podlubny I. Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheol Acta, 2006, 45: 765–771

    Article  Google Scholar 

  8. Hilfer R. Applications of Fractional Calculus in Physics. Singapore: World Scientific Publ Co, 2000

    Book  MATH  Google Scholar 

  9. Jia J H, Shen X Y, Hua H X. Viscoelastic behavior analysis and application of the fractional derivative Maxwell model. J Vib Control, 2007, 13(4): 385–401

    Article  MathSciNet  MATH  Google Scholar 

  10. Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, Vol 204. Amsterdam: Elservier Science BV, 2006

  11. Koeller R C. Applications of fractional calculus to the theory of viscoelasticity. J Appl Mech, 1984, 51(2): 299–307

    Article  MathSciNet  MATH  Google Scholar 

  12. Kumar S, Sukavanam N. Approximate controllability of fractional order semilinear systems with bounded delay. J Diff Equat, 2012, 252: 6163–6174

    Article  MathSciNet  MATH  Google Scholar 

  13. Li J, Liu F, Feng L, Turner I. A novel finite volume method for the Riesz space distributed-order diffusion equation. Comput Math Appl, 2017, 74: 772–783

    Article  MathSciNet  MATH  Google Scholar 

  14. Li X W, Liu Z H, Tisdell C C. Existence and exact controllability of fractional evolution inclusions with damping. Math Meth Appl Sci, 2017, 40(12): 4548–4559

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu X Y, Liu Z H, Fu X. Relaxation in nonconvex optimal control problems described by fractional differential equations. J Math Anal Appl, 2014, 409(1): 446–458

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu Z H, Li X W. On the controllability of impulsive fractional evolution inclusions in Banach spaces. J Optim Theory Appl, 2013, 156: 167–182

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu Z H, Li X W. Approximate controllability of fractional evolution systems with Riemann-Liouville fractional derivatives. SIAM J Control Optim, 2015, 53(4): 1920–1933

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu Z H, Zeng S D, Bai Y R. Maximum principles for multi-term space-time variable-order fractional diffusion equations and their applications. Fract Calc Appl Anal, 2016, 19(1): 188–211

    MathSciNet  MATH  Google Scholar 

  19. Lizama C. An operator theoretical approach to a class of fractional order differential equations. Appl Math Lett, 2011, 24: 184–190

    Article  MathSciNet  MATH  Google Scholar 

  20. Mei Z D, Peng J G. Riemann-Liouville abstract fractional Cauchy problem with damping. Indagat Math, 2014, 25: 145–161

    Article  MathSciNet  MATH  Google Scholar 

  21. Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. New York: Springer-Verlag, 1983

    Book  MATH  Google Scholar 

  22. Podlubny I. Fractional Differential Equations. San Diego: Academic Press, 1999

    MATH  Google Scholar 

  23. Rüdinger F. Tuned mass damper with fractional derivative damping. Eng Struct, 2006, 28(13): 1774–1779

    Article  Google Scholar 

  24. Wang J, F˘eckan M, Zhou Y. Center stable manifold for planar fractional damped equations. Appl Math Comput, 2017, 296: 257–269

    MathSciNet  Google Scholar 

  25. Liu Z H, Zeng S D. Differential variational inequalities in infinite Banach spaces. Acta Math Sci, 2017, 37B(1): 26–32

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhai Liu  (刘振海).

Additional information

Project supported by NNSF of China (11671101, 11661001), NSF of Guangxi (2018GXNSFDA138002), NSF of Hunan (2018JJ3519) and the funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie (823731 CONMECH).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Liu, Z., Li, J. et al. Existence And Controllability For Nonlinear Fractional Control Systems With Damping in Hilbert Spaces. Acta Math Sci 39, 229–242 (2019). https://doi.org/10.1007/s10473-019-0118-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-019-0118-5

Key words

2010 MR Subject Classification

Navigation