Skip to main content
Log in

Harmonic flow of geometric structures

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We give a twistorial interpretation of geometric structures on a Riemannian manifold, as sections of homogeneous fibre bundles, following an original insight by Wood (Differ Geom Appl 19:193–210, 2003). The natural Dirichlet energy induces an abstract harmonicity condition, which gives rise to a geometric gradient flow. We establish a number of analytic properties for this flow, such as uniqueness, smoothness, short-time existence, and some sufficient conditions for long-time existence. This description potentially subsumes a large class of geometric PDE problems from different contexts. As applications, we recover and unify a number of results in the literature: for the isometric flow of \(\text {G}_2\)-structures, by Grigorian (Adv Math 308:142–207, 2017; Calculas Variat Partial Differ Equ 58:157, 2019), Bagaglini (J Geom Anal, 2009), and Dwivedi-Gianniotis-Karigiannis (J Geom Anal 31(2):1855-1933, 2021); and for harmonic almost complex structures, by He (Energy minimizing harmonic almost complex structures, 2019) and He-Li (Trans Am Math Soc 374(9):6179–6199, 2021). Our theory also establishes original properties regarding harmonic flows of parallelisms and almost contact structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Azencott, R., Wilson, E.N.: Homogeneous manifolds with negative curvature I. Trans. AMS 215, 323–362 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bagaglini, L.: A flow of isometric \({G}_2\)-structures. Short-time existence. J. Geom. Anal. (2019). arXiv:1709.06356

  3. Bagaglini, L.: The energy functional of G2-structures compatible with a background metric. J. Geom. Anal. 31(1), 346–365 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Besse, A. L.: Einstein manifolds. Reprint of the 1987 edition. Classics in Mathematics, Springer-Verlag, Berlin (2008)

  5. Boling, J., Kelleher, C., Streets, J.: Entropy, stability and harmonic map flow. Trans. Am. Math. Soc. 369(8), 5769–5808 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blair, D.E.: Riemannian geometry of contact and symplectic manifolds, 2nd ed., Vol. 203, Boston, MA: Birkhauser, (English) (2010)

  7. Bryant, R.L.: Some remarks on G2.structures, Proceedings of Gokova Geometry-Topology Conference 2005, pp. 75-109. MR2282011 (2007k:53019) (2006)

  8. Chen, Y., Ding, W.-Y.: Blow-ups and global existence for heat flows of harmonic maps. Invent. Math. 99, 567–578 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Crowley, D., Goette, S., Nordstrom, J.: An analytic invariant of G2.manifolds, 1-26 pp., available at arXiv: 1505.02734v1 (2015)

  10. Chen, G.: Shi-type estimates and finite time singularities of flows of G2-structures. Q. J. Math. 69(3), 779–797 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Davidov, J.: Harmonic almost Hermitian structures, Special metrics and group actions in geometry. Proceedings of the INdAM workshop New perspectives in differential geometry, on the occasion of the 60th birthday of Simon Salamon, Rome, Italy, November 16.20, 2015, pp. 129-159 (English) (2017)

  12. Dwivedi, S., Gianniotis, P., Karigiannis, S.: A gradient flow of isometric G2-structures. J. Geom. Anal. 31(2), 1855–1933 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dwivedi, S., Loubeau, E., Sa Earp, H.N.: Harmonic flow of Spin(7)-structures, to appear in Annali della Scuola Normale Superiore di Pisa, Classe di Scienze (September), available at 2109.06340 (2021)

  14. Davidov, J., Mushkarov, O.: Harmonic almost complex structures on twistor spaces. Israel J. Math. 131, 319–332 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86(1), 109–160 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  16. Friedrich, T., Kath, I., Moroianu, A., Semmelmann, U.: On nearly parallel G2. structures. J. Geom. Phys. 23(3–4), 259–286 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gonzalez-Davila, J.C., Martin Cabrera, F.: Harmonic G-structures. Math. Proc. Cambridge Philos. Soc. 146(2), 435–459 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gray, J.W.: Some global properties of contact structures. Ann. Math. 69(2), 421–450 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gray, A.: Vector cross products on manifolds. Trans. Amer. Math. Soc. 141, 465–504 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grigor’yan, A.: Gaussian upper bounds for the heat kernel on arbitrary manifolds. J. Diff. Geom. 45, 33–52 (1997)

    MathSciNet  MATH  Google Scholar 

  21. Grigorian, S.: Short-time behaviour of a modified Laplacian coflow of G2-structures. Adv. Math. 248, 378–415 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grigorian, S.: G2-structures and octonion bundles. Adv. Math. 308, 142–207 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grigorian, S.: Estimates and monotonicity for a heat flow of isometric G2-structures. Calculus Variat. Partial Differ. Equ. 58, 175 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hamilton, R.S.: Monotonicity formulas for parabolic flows on manifolds. Comm. Anal. Geom. 1(1), 127–137 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. He, W.: Energy minimizing harmonic almost complex structures , available at (2019) arXiv:1907.12211

  26. Hitchin, N.J.: Stable forms and special metrics, Global differential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000), pp. 70-89. MR1871001 (2003f:53065) (2001)

  27. He, W., Li, B.: The harmonic heat flow of almost complex structures. Trans. Am. Math. Soc. 374(9), 6179–6199 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Huang, T., Wang, C.-Y.: On uniqueness of heat flow of harmonic maps. Indiana Univ. Math. J. 65(5), 1525–1546 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Karigiannis, S.: Flows of G2-structures, Q. J. Math. 60(4) (2007)

  30. Kobayashi, S., Nomizu, K.: Foundations of differential geometry, Vol. II, Interscience publishers New York (1969)

  31. Lauret, J.: Convergence of homogeneous manifolds. J. Lond. Math. Soc., II. Ser. 86(3), 701–727 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lauret, J.: Geometric flows and their solitons on homogeneous spaces. Rendiconti del Seminario Matematico di Torino 74, 55–93 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Van Le, H., Mobeen, M.: Classification of compact homogeneous spaces with invariant G2-structures. Adv. Geom. 12(2), 303–328 (2012)

    Article  MATH  Google Scholar 

  34. Loubeau, E., Moreno, A.J., Sa Earp, H.N., Saavedra, J.: Harmonic Sp(2)-invariant G2-structures on the 7-sphere. J. Geom. Anal. 32, 240 (2022)

    Article  MATH  Google Scholar 

  35. Loubeau, E.: Harmonic geometric structures: the general theory and the cases of almost complex and almost contact structures. Note Mat. 37, 103–118 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Lin, F., Wang, C.: The analysis of harmonic maps and their heat flows, World Scientific Publishing (2008)

  37. Lin, F.-H., Wang, C.-Y.: On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals. Chin. Annals Math., Ser. B 31(6), 921–938 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lotay, J., Wei, Y.: Laplacian Flow for Closed G2.structures: shi-type estimates. Uniqueness Compact., GAFA 27, 165–233 (2017)

    MATH  Google Scholar 

  39. Lotay, J.D., Wei, Y.: Laplacian flow for closed G2 structures: real analyticity. Commun. Anal. Geom. 27(1), 73–109 (2019)

    Article  MATH  Google Scholar 

  40. Lotay, J.D., Wei, Y.: Stability of torsion-free G2.structures along the Laplacian flow. J. Diff. Geom. 111(3), 495–526 (2019)

    MATH  Google Scholar 

  41. Nishikawa, S.: Variational problems in geometry, Trans. Math. Monogr., vol. 205, AMS (2002)

  42. Reidegeld, Frank: Spaces admitting homogeneous G2-structures. Differ. Geometry Appl. 28(3), 301–312 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Vergara-Diaz, E., Wood, C.M.: Harmonic almost contact structures. Geom. Dedicata. 123, 131–151 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wiegmink, G.: Total bending of vector fields on Riemannian manifolds. Math. Ann. 303(2), 325–344 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wood, C.M.: An existence theorem for harmonic secitons. Manuscripta Math. 68, 69–75 (1990)

    Article  MathSciNet  Google Scholar 

  46. Wood, C.M.: Instability of the nearly-Kahler six-sphere, J. Reine Angew. Math. 439 , 205-212 (English) (1993)

  47. Wood, C.M.: Harmonic almost-complex structures. Compos. Math. 99(2), 183–212 (1995)

    MathSciNet  MATH  Google Scholar 

  48. Wood, C.M.: Harmonic sections and equivariant harmonic maps. Manuscripta Mathematica 94, 1 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wood, C.M.: The energy of Hopf vector fields. Manuscripta Math. 101(1), 71–88 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wood, C.M.: Harmonic sections of homogeneous fibre bundles. Differ. Geom. Appl. 19, 193–210 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for numerous constructive suggestions to the original manuscript.

Funding

This project started during a visiting chair by EL, sponsored by Unicamp and Institut Français du Brésil, in 2017. The present article stems from an ongoing CAPES-COFECUB bilateral collaboration (2018-2021), Granted by Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES) - Finance Code 001 [88881.143017/2017-01], and Campus France [MA 898/18]. HSE has been funded by São Paulo Research Foundation (Fapesp) [2017/20007-0] & [2018/21391-1] and the Brazilian National Council for Scientific and Technological Development (CNPq) [307217/2017-5]. Over its revision period, the project was further supported by the collaboration BRIDGES: Brazil-France interplays in Gauge Theory, extremal structures and stability, Granted by Fapesp [2021/04065-6] and the French National Research Agency [ANR-21-CE40-0017)].

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the manuscript.

Corresponding author

Correspondence to Henrique N. Sá Earp.

Ethics declarations

Conflict of interest:

Not applicable.

Ethical approval and consent to participate:

Not applicable.

Consent for publication:

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loubeau, E., Sá Earp, H.N. Harmonic flow of geometric structures. Ann Glob Anal Geom 64, 23 (2023). https://doi.org/10.1007/s10455-023-09928-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10455-023-09928-7

Navigation