Skip to main content
Log in

The space of solvsolitons in low dimensions

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

Up to now, the only known examples of homogeneous nontrivial Ricci soliton metrics are the so-called solvsolitons, i.e., certain left-invariant metrics on simple connected solvable Lie groups. In this article, we describe the moduli space of solvsolitons of dimension ≤ 6 up to isomorphism and scaling. We start with the already known classification of nilsolitons and, following the characterization given by Lauret in (J. Reine Angew. Math. 650:1–21, 2011), we describe the subspace of solvsolitons associated to a given nilsoliton, as the quotient of a Grassmanian by a finite group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseevskii, D.V.: Conjugacy of polar factorizations of Lie groups. Math. Sb. 84, 14–26 (1971) (English translation. Math. USSR Sb. 13:12–24)

  2. Glickenstein, D., Payne, T.L.: Ricci flow on three-dimensional unimodular metric Lie algebras, preprint (2009) (arXiv:math.DG/0909.0938)

  3. Heber J.: Noncompact homogeneous Einstein spaces. Invent. Math. 133(2), 279–352 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Helgason, S.: Differential geometry, Lie groups, and symmetric spaces. Graduate studies in mathematics, vol. 34. AMS, Academic Press, New York (1978)

  5. Lafuente, R.: Solsolitons associated with graphs, preprint (2010) (arXiv)

  6. Lauret J.: Homogeneous nilmanifolds of dimensions 3 and 4. Geom. Dedicata 68, 145–155 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lauret J.: Finding Einstein solvmanifolds by a variational method. Math. Z. 241(1), 83–99 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lauret J.: Einstein solvmanifolds and nilsolitons. Contemp. Math. 491, 1–35 (2009)

    MathSciNet  Google Scholar 

  9. Lauret J.: Ricci soliton solvmanifolds. J. Reine Angew. Math. 650, 1–21 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lauret, J., Will, C.: Einstein solvmanifolds: existence and non-existence questions. Math. Ann. (2011) (in press) (arXiv)

  11. Nikitenko E.V., Nikonorov Y.G.: Six dimensional Einstein Solvmanifolds. Siberian Adv. Math. 16, 1–47 (2006)

    MathSciNet  Google Scholar 

  12. Nikolayevsky Y.: Einstein solvmanifolds with free nilradical. Ann. Global Anal. Geom. 33, 71–87 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nikolayevsky Y.: Einstein solvmanifolds with a simple Einstein derivation. Geom. Dedicata 135, 87–102 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Payne, T.: The existence of soliton metrics for nilpotent Lie groups. Geom. Dedicata 145(1), 71–88 (2010)

    Google Scholar 

  15. Saal L.: The automorphism group of a Lie algebra of Heisenberg type. Rend. Sem. Mat. Univ. Politec. Torino. 54, 101–113 (1996)

    MathSciNet  MATH  Google Scholar 

  16. Wallach, N.R.: Real reductive grous. I. Pure and Applied Mathematics, vol. 132. Academic Press, Boston (1988)

  17. Will C.: Rank-one Einstein Solvmanifolds of dimension 7. Diff. Geom. Appl. 19, 307–318 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia Will.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Will, C. The space of solvsolitons in low dimensions. Ann Glob Anal Geom 40, 291–309 (2011). https://doi.org/10.1007/s10455-011-9258-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-011-9258-0

Keywords

Mathematics Subject Classification (1991)

Navigation