Skip to main content
Log in

Regular Moebius transformations of the space of quaternions

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

Quaternionic Moebius transformations have been investigated for more than 100 years and their properties have been characterized in detail. In recent years G. Gentili and D. C. Struppa introduced a new notion of regular function of a quaternionic variable, which is developing into a quite rich theory. Several properties of regular quaternionic functions are analogous to those of holomorphic functions of one complex variable, although the diversity of the non-commutative setting introduces new phenomena. Unfortunately, the (classical) quaternionic Moebius transformations are not regular. However, in this paper we are able to construct a different class of Moebius-type transformations that are indeed regular. This construction requires several steps: we first find an analog to the Casorati-Weierstrass theorem and use it to prove that the group \({Aut(\mathbb{H})}\) of biregular functions on \({\mathbb{H}}\) coincides with the group of regular affine transformations. We then show that each regular injective function from \({\widehat{\mathbb{H}} = \mathbb{H}\cup \{\infty\}}\) to itself belongs to a special class of transformations, called regular fractional transformations. Among these, we focus on the ones which map the unit ball \({\mathbb{B} = \{q \in \mathbb{H} : |q| < 1 \}}\) onto itself, called regular Moebius transformations. We study their basic properties and we are able to characterize them as the only regular bijections from \({\mathbb{B}}\) to itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors L.V.: Möbius transformations in R n expressed through 2 × 2 matrices of Clifford numbers. Complex Var. Theory Appl. 5(2–4), 215–224 (1986)

    MathSciNet  Google Scholar 

  2. Bisi C., Gentili G.: Möbius transformations and the Poincaré distance in the quaternionic setting. Indiana Univ. Math. J. 58(6), 2729–2764 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brackx F., Delanghe R., Sommen F.: Clifford Analysis, Volume 76 of Research Notes in Mathematics. Pitman (Advanced Publishing Program), Boston, MA (1982)

    Google Scholar 

  4. Colombo F., Sabadini I., Sommen F., Struppa D.C.: Analysis of Dirac Systems and Computational Algebra, Volume 39 of Progress in Mathematical Physics. Birkhäuser Boston Inc., Boston, MA (2004)

    Google Scholar 

  5. Colombo F., Gentili G., Sabadini I., Struppa D.C.: A functional calculus in a noncommutative setting. Electron. Res. Announc. Math. Sci. 14, 60–68 (2007) (electronic)

    MathSciNet  Google Scholar 

  6. Colombo F., Sabadini I., Struppa D.C.: A new functional calculus for noncommuting operators. J. Funct. Anal. 254(8), 2255–2274 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Colombo F., Gentili G., Sabadini I., Struppa D.: Extension results for slice regular functions of a quaternionic variable. Adv. Math. 222, 1793–1808 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Colombo F., Gentili G., Sabadini I., Struppa D.C.: An overview of functional calculus in different settings. In: Sabadini, I., Shapiro, M., Sommen, F. (eds) Hypercomplex Analysis, Trends in Mathematics, pp. 69–100. Birkhäuser, Verlag, Basel (2009)

    Google Scholar 

  9. Colombo F., Gentili G., Sabadini I.: A Cauchy kernel for slice regular functions. Ann. Global Anal. Geom. 37(4), 361–378 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cullen C.G.: An integral theorem for analytic intrinsic functions on quaternions. Duke Math. J. 32, 139–148 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fueter R.: Die Funktionentheorie der Differentialgleichungen Δu = 0 und ΔΔu = 0 mit vier reellen Variablen. Comment. Math. Helv. 7(1), 307–330 (1934)

    Article  MathSciNet  Google Scholar 

  12. Fueter R.: Über die analytische Darstellung der regulären Funktionen einer Quaternionenvariablen. Comment. Math. Helv. 8(1), 371–378 (1935)

    Article  MathSciNet  Google Scholar 

  13. Fueter R.: Über einen Hartogs’schen Satz. Comment. Math. Helv. 12, 75–80 (1939)

    Article  MathSciNet  Google Scholar 

  14. Gentili G., Stoppato C.: Zeros of regular functions and polynomials of a quaternionic variable. Michigan Math. J. 56(3), 655–667 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gentili G., Stoppato C.: The open mapping theorem for regular quaternionic functions. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) VIII(4), 805–815 (2009)

    MathSciNet  Google Scholar 

  16. Gentili, G., Stoppato, C.: The zero sets of slice regular functions and the open mapping theorem, (2011). In: Sabadini, I., Sommen, F. (eds.) Hypercomplex Analysis and Applications, Trends in Mathematics Springer, pp. 95–108. Basel

  17. Gentili G., Stoppato C., Struppa D.C., Vlacci F.: Recent developments for regular functions of a hypercomplex variable. In: Sabadini, I., Shapiro, M., Sommen, F. (eds) Hypercomplex analysis, Trends in Mathematics, pp. 165–186. Birkhäuser Verlag, Basel (2009)

    Google Scholar 

  18. Gentili G., Struppa D.C.: A new approach to Cullen-regular functions of a quaternionic variable. C. R. Math. Acad. Sci. Paris 342(10), 741–744 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Gentili G., Struppa D.C.: A new theory of regular functions of a quaternionic variable. Adv. Math. 216(1), 279–301 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gentili G., Struppa D.C.: On the multiplicity of zeroes of polynomials with quaternionic coefficients. Milan J. Math. 76, 15–25 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gentili G., Struppa D.C., Vlacci F.: The fundamental theorem of algebra for Hamilton and Cayley numbers. Math. Z. 259(4), 895–902 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gentili G., Vlacci F.: Rigidity for regular functions over Hamilton and Cayley numbers and a boundary Schwarz Lemma. Indag. Math. (N.S.) 19(4), 535–545 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Niven I.: Equations in quaternions. Amer. Math. Monthly 48, 654–661 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pogorui A., Shapiro M.: On the structure of the set of zeros of quaternionic polynomials. Complex Var. Theory Appl. 49(6), 379–389 (2004)

    MathSciNet  MATH  Google Scholar 

  25. Rowen L.H.: Ring Theory. Academic Press Inc., Boston (1991) student edition

    MATH  Google Scholar 

  26. Stoppato C.: Poles of regular quaternionic functions. Complex Var. Elliptic Equ. 54(11), 1001–1018 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sudbery A.: Quaternionic analysis. Math. Proc. Cambridge Philos. Soc. 85(2), 199–224 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caterina Stoppato.

Additional information

Partially supported by GNSAGA of the INdAM, by PRIN “Proprietà geometriche delle varietà reali e complesse” and by PRIN “Geometria Differenziale e Analisi Globale” of the MIUR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoppato, C. Regular Moebius transformations of the space of quaternions. Ann Glob Anal Geom 39, 387–401 (2011). https://doi.org/10.1007/s10455-010-9238-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-010-9238-9

Keywords

Navigation