Skip to main content
Log in

Commutator representations and roots of pseudo differential operators

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

Based on the fundamental commutator representation proposed by Cao [4] we established two explicit expressions for roots of a third order differential operator. By using those expressions we succeeded in clarifying the relationship between two major approaches in theory of integrable systems: the zero curvature and the Lax representations for the KdV and the Boussinesq hierarchies. The proposed procedure could be extended to the general case of higher order of differential operators that leads to the Gel’fand-Dickey hierarchy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz, M.J., Clarkson, P.A. Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge, UK, 2001

    MATH  Google Scholar 

  2. Avramidi, I.V., Schimming, R. A new explicit expression for the Korteweg - de Vries hierarchy. Math. Nach., 219: 45–64(2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brunelli, J.C. PSEUDO: applications of streams and lazy evaluation to integrable models. Computer Physics Communications, 163, 22–40 (2004)

    Article  MATH  Google Scholar 

  4. Cao, C.W. Commutator representation of isospectral equations. Chin. Sci. Bull., 34: 1331–1333 (1989)

    MathSciNet  MATH  Google Scholar 

  5. Das, A., Huang, W.J., Roy, S. The zero curvature formulation of the Boussinesq equaton. Phys. Lett. A, 153: 186–190 (1991)

    Article  MathSciNet  Google Scholar 

  6. Gu, C.H. Soliton Theory and Its Applications. Springer-Verlag, 1995

    Book  MATH  Google Scholar 

  7. Dickey, L.A. Soliton equations and Hamiltonian systems. World Scientific, Singapore, 2003

    Book  MATH  Google Scholar 

  8. Fan, E.G. The zero curvature representation for hierarchies of nonlinear evolution equations. Phys. Lett. A, 274: 135–142 (2000)

    Article  MathSciNet  Google Scholar 

  9. Fuchssteiner, B. Application of hereditary symmetries to nonlinear evolution equations. Nonlinear Anal. Theory. Method Appl., 3: 849–862 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gurses, M., Karasu A., Sokolov V. On construction of recursion operators from Lax representation. J. Math. Phys., 40: 6473–6499 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hirota, R. The Direct Method in Soliton Theory. Cambridge University Press, 2004

    Book  MATH  Google Scholar 

  12. Kosmann-Schwarzbach, Y., Magri F. Lax-Nijenhuis operators for integrable systems. 1–46(preprint)

  13. Li, Y.S. Soliton and Integrable systems. Sci. Tech. Edu. Pub., Shanghai, 1999

    Google Scholar 

  14. Ma, W.X. A new involutive system of polynomials and its classical Integrable Systems. Chin. Sci. Bull. 35: 1853–1858 (1990)

    MathSciNet  MATH  Google Scholar 

  15. Ma, W.X. Variational identities and applications to Hamiltonian structures of soliton equations. Nonlinear Analysis, 71: e1716–e1726 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Magri, F. A simple model of the integrable Hamiltonian equation. J. Math. Phys., 19: 1156–1162 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  17. Olver, P.J. Application of Lie Groups to Differential Equations, 2nd edition. Springer-Verlag, 1993

    Book  MATH  Google Scholar 

  18. Poole, D., Hereman, W. The homotopy operator method for symbolic integration by parts and inversion of divergences with applications. Applicable Analysis, 1–22 (2009) (preprint)

    Google Scholar 

  19. Qiao, Z.J. Commutator representations of three isospectral equation hierarchies. Chinese J. Contemporary Math., 14: 41–49 (1993)

    MathSciNet  MATH  Google Scholar 

  20. Schimming, R., Rida, S.Z. Explicit formulae for the powers of a Schrodinger-like ordinary differential operator II. Chaos, Solitons and Fractals, 14: 1007–1014 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tu, G.Z. The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. J. Math. Phys., 30: 330–338 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tu, G.Z. On Liouville integrability of zero-curvature equations and the Yang hierarchy. J. Phys. A, 22: 2375–2392 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Xu, T. Constructing Lax Pairs for Soliton Equations. 1–9 (preprint)

  24. Yao, R.X., Li, Z.B. CONSLAW: a Maple Package to Construct the Conservation Laws for Nonlinear Evolution Equations. Differential Equations with Symbolic Computation Trends in Mathematics, 2005, 307–325

    MATH  Google Scholar 

  25. Zhang, Y.F., Hon, Y.C. Some evolution hierarchies derived from self-dual Yang-mills equations. Commun. Theor. Phys., 56: 856–872 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-zhang Tu.

Additional information

Supported by the National Natural Science Foundation of China (No. 11275129).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, Gz. Commutator representations and roots of pseudo differential operators. Acta Math. Appl. Sin. Engl. Ser. 32, 559–570 (2016). https://doi.org/10.1007/s10255-016-0577-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-016-0577-6

Keywords

2000 MR Subject Classification

Navigation