Skip to main content
Log in

Existence for doubly nonlinear fractional p-Laplacian equations

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

We prove the existence of a global-in-time weak solution to a doubly nonlinear parabolic fractional p-Laplacian equation, which has general double nonlinearity including not only the Sobolev subcritical/critical/supercritical cases but also the slow/homogenous/fast diffusion ones. Our proof exploits the weak convergence method for the doubly nonlinear fractional p-Laplace operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Let \({\mathcal {X}}\) be a Banach space. A function \([0,\infty ) \ni t \mapsto u(t)\equiv u(\cdot , t) \in {\mathcal {X}}\) is called weakly continuous in \({\mathcal {X}}\) provided that \( [0,\infty ) \ni t\mapsto \langle u(t), \psi \rangle _{{\mathcal {X}} \times {\mathcal {X}}^\prime }\) is continuous for every \(\psi \in {\mathcal {X}}^\prime \). Here \(\langle \cdot , \cdot \rangle _{{\mathcal {X}} \times {\mathcal {X}}^\prime }\) represents the dual pairing between \({\mathcal {X}}\) and \({\mathcal {X}}^\prime \).

References

  1. Abdellaoui, B., Attar, A., Bentifour, R., Peral, I.: On fractional \(p\)-Laplacian parabolic problem with general data. Ann. Mat. Pura Appl. (4) 197(2), 329–356 (2018)

    Article  MathSciNet  Google Scholar 

  2. Acerbi, E., Fusco, N.: Regularity for minimizers of nonquadratic functionals: the case \(1<p<2\). J. Math. Anal. Appl. 140(1), 115–135 (1989)

    Article  MathSciNet  Google Scholar 

  3. Alt, H.W., Luckhaus, S.: Quasilinear elliptic-parabolic differential equations. Math. Z. 183, 311–341 (1983)

    Article  MathSciNet  Google Scholar 

  4. Bögelein, V., Duzaar, F., Marcellini, P., Scheven, C.: Doubly nonlinear equations of porous medium type. Arch. Ration. Mech. Anal. 229(2), 503–545 (2018)

    Article  MathSciNet  Google Scholar 

  5. Brasco, L., Mosconi, S., Squassina, M.: Optimal decay of extremals for the fractional Sobolev inequality. Calc. Var. Partial Differ. Equ. 55(2), Art. 23 (2016)

  6. Chen, Y., Hong, M.-C., Hungerbüler, N.: Heat flow of \(p\)-harmonic maps with values into spheres. Math. Z. 215, 25–35 (1994)

    Article  MathSciNet  Google Scholar 

  7. Daskalopoulos, P., Sire, Y., Vázquez, J.L.: Weak and smooth solutions for a fractional Yamabe flow: the case of general compact and locally conformally flat manifolds. Commun. Partial Differ. Equ. 42(9), 1481–1496 (2017)

    Article  MathSciNet  Google Scholar 

  8. Di Castro, A., Kuusi, T., Palatucci, G.: Nonlocal Harnack inequalities. J. Funct. Anal. 267(6), 1807–1836 (2014)

    Article  MathSciNet  Google Scholar 

  9. Di Castro, A., Kuusi, T., Palatucci, G.: Local behavior of fractional \(p\)-minimizers. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(5), 1279–1299 (2016)

    Article  MathSciNet  Google Scholar 

  10. DiBenedetto, E.: Degenerate Parabolic Equations. Universitext, Springer-Verlag, New York (1993)

    Book  Google Scholar 

  11. de Pablo, A., Quirós, F., Rodríguez, A., Vázquez, J.L.: A general fractional porous medium equation. Commun. Pure Appl. Math. 65(9), 1242–1284 (2012)

    Article  MathSciNet  Google Scholar 

  12. del Mar González, M., Qing, J.: Fractional conformal Laplacians and fractional Yamabe problems. Anal. PDE 6(7), 1535–1576 (2013)

    Article  MathSciNet  Google Scholar 

  13. Fiscella, A., Servadei, R., Valdinoci, E.: Density properties for fractional Sobolev spaces. Ann. Acad. Sci. Fenn. Math. 40(1), 235–253 (2015)

    Article  MathSciNet  Google Scholar 

  14. Giaquinta, M., Modica, G.: Remarks on the regularity of the minimizers of certain degenerate functionals. Manuscr. Math. 57(1), 55–99 (1986)

    Article  MathSciNet  Google Scholar 

  15. Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific Publishing Company, Tuck Link, Singapore (2003)

    Book  Google Scholar 

  16. Graham, C.R., Zworski, M.: Scattering matrix in conformal geometry. Invent. Math. 152(1), 89–118 (2003)

    Article  MathSciNet  Google Scholar 

  17. Hamilton, R.S.: The Ricci flow on surfaces. In: Mathematics and General Relativity (Santa Cruz, CA, 1986), Contemp. Math., 71, 237–262. Amer. Math. Soc., Providence, RI (1988)

  18. Hungerbüler, N.: Quasi-linear parabolic systems in divergence form with weak monotonicity. Duke Math. J. 107(3), 497–520 (2001)

    MathSciNet  Google Scholar 

  19. Iannizzotto, A., Mosconi, S., Squassina, M.: Global Hölder regularity for the fractional \(p\)-Laplacian. Rev. Mat. Iberoam 32(4), 1353–1392 (2016)

    Article  MathSciNet  Google Scholar 

  20. Jin, T., Xiong, J.: A fractional Yamabe flow and some applications. J. Reine Angew. Math. 696, 187–223 (2014)

    Article  MathSciNet  Google Scholar 

  21. Kuusi, T., Misawa, M., Nakamura, K.: Regularity estimates for the \(p\)-Sobolev flow. J. Geom. Anal. 30, 1918–1964 (2020)

    Article  MathSciNet  Google Scholar 

  22. Kuusi, T., Misawa, M., Nakamura, K.: Global existence for the \(p\)-Sobolev flow. J. Differ. Equ. 279, 245–281 (2021)

    Article  MathSciNet  Google Scholar 

  23. Kuusi, T., Palatucci, G. (eds.): Recent Developments in Nonlocal Theory. De Gruyter, Berlin/Boston (2018)

    Google Scholar 

  24. Mazón, J.M., Rossi, J.D., Toledo, J.: Fractional \(p\)-Laplacian evolution equations. J. Math. Pures Appl. (9) 105(6), 810–844 (2016)

    Article  MathSciNet  Google Scholar 

  25. Misawa, M., Nakamura, K.: Existence of a sign-changing weak solution to doubly nonlinear parabolic equations. J. Geom. Anal. 33(1), 33 (2023)

    Article  MathSciNet  Google Scholar 

  26. Misawa, M., Nakamura, K., Yamaura, Y.: A volume constraint problem for the nonlocal doubly nonlinear parabolic equation. Math. Eng. 5(6), 098 (2023)

    Article  MathSciNet  Google Scholar 

  27. Nakamura, K., Misawa, M.: Existence of a weak solution to the \(p\)-Sobolev flow. Nonlinear Anal. TMA 175C, 157–172 (2018)

    Article  MathSciNet  Google Scholar 

  28. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev space. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  29. Ponce, A.C.: Elliptic PDEs, Measures and Capacities, Tracts in Mathematics 23. European Mathematical Society (EMS), Zurich (2016)

    Book  Google Scholar 

  30. Puhst, D.: On the evolutionary fractional \(p\)-Laplacian. Appl. Math. Res. Express. AMRX 2, 253–273 (2015)

    Article  MathSciNet  Google Scholar 

  31. Rothe, E.: Über die Wärmeleitungsgleichung mit nichtkonstanten Koeffizienten im räumlichen Falle (German). Math. Ann. 104(1), 340–362 (1931)

    Article  MathSciNet  Google Scholar 

  32. Vázquez, J.L.: The Dirichlet problem for the fractional \(p\)-Laplacian evolution equation. J. Differ. Equ. 260(7), 6038–6056 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for the careful reading of the original version of the manuscript and for the many sharp comments that eventually led to an improvement of presentation; in particular, the referee pointed out Remark 5.2. Moreover, MM acknowledges the partial support by the Grant-in-Aid for Scientific Research (C) Grant No.21K03330 (2021) at JSPS. The work by KN was also partially supported by Grant-in-Aid for Young Scientists Grant No.21K13824 (2021) at JSPS. YY was also partially supported by Grant-in-Aid for Scientific Research (C) Grant No.18K03381 (2018) at JSPS, and by Individual Research Expense of College of Humanities and Sciences at Nihon University for 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenta Nakamura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Lemma 3.1

In this appendix, we prove the existence of solutions of (3.1), Lemma 3.1. The proof is based on the direct method in the calculus of variations. In the course of this appendix, let \(s \in (0,1)\), \(p>1\) and \(q>0\) be given and set \({\mathbb {X}}:=W_0^{s,p}(\Omega ) \cap L^{q+1}(\Omega )\).

Proof of Lemma 3.1

Given \(u_{m-1} \in {\mathbb {X}}\), we define the functional on \({\mathbb {X}}\):

$$\begin{aligned} {\mathbb {X}} \ni w \quad \mapsto \quad {\mathcal {F}}(w):=\dfrac{1}{h}\int _\Omega \left( \dfrac{1}{q+1}|w|^{q+1}-|u_{m-1}|^{q-1}u_{m-1}w \right) \,dx+\dfrac{1}{2p}[w]_{W^{s,p}({\mathbb {R}}^n)}^p. \end{aligned}$$

The proof is twofold: first, we shall show the existence of a minimizer of the functional \({\mathcal {F}}(w)\), then we shall demonstrate the first variation of \({\mathcal {F}}(w)\), both of them show the validity of Lemma 3.1.

By Young’s inequality, there holds for any \(w \in {\mathbb {X}}\)

$$\begin{aligned} {\mathcal {F}}(w)&=\dfrac{1}{h}\int _\Omega \left( \dfrac{1}{q+1}|w|^{q+1}-|u_{m-1}|^{q-1}u_{m-1}w \right) \,dx+\dfrac{1}{2p}[w]_{W^{s,p}({\mathbb {R}}^n)}^p \nonumber \\&\geqslant \dfrac{1}{h} \int _\Omega \left( \dfrac{1}{2(q+1)}|w|^{q+1}-C(q)|u_{m-1}|^{q+1} \right) \,dx+\dfrac{1}{2p}[w]_{W^{s,p}({\mathbb {R}}^n)}^p \nonumber \\&>-\infty . \end{aligned}$$
(A.1)

Let \(\{u_k\}_{k=1}^\infty \) be a minimizing sequence, such that

$$\begin{aligned} \inf {\mathcal {F}} \leqslant {\mathcal {F}} (u_k) < \inf {\mathcal {F}}+\dfrac{1}{k} \end{aligned}$$

for all \(k \in {\mathbb {N}}\), where the infimum is taken for \(w \in {\mathbb {X}}\). Note that, for all \(w \in {\mathbb {X}}\),

$$\begin{aligned} - C \Vert u_{m - 1}\Vert _{L^{q + 1} (\Omega )}^{q + 1} \leqslant \inf {\mathcal {F}} \leqslant {\mathcal {F}} (v) < \infty \end{aligned}$$

with some \(v \in {\mathbb {X}}\) not empty, because \(C^\infty _0 (\Omega ) \subset {\mathbb {X}}\). We then observe that

$$\begin{aligned} \sup \limits _{k \in {\mathbb {N}}} {\mathcal {F}}(u_k) \leqslant \inf {\mathcal {F}}+1=:M<\infty \end{aligned}$$

and, by (A.1),

$$\begin{aligned} \dfrac{1}{h} \int _\Omega \dfrac{1}{2(q+1)}|u_k|^{q+1}\,dx+\dfrac{1}{2p}[u_k]_{W^{s,p}({\mathbb {R}}^n)}^p \leqslant M+C\int _\Omega |u_{m-1}|^{q+1}\,dx, \end{aligned}$$
(A.2)

implying

$$\begin{aligned} \sup \limits _{k \in {\mathbb {N}}} \Vert u_k\Vert _{L^{q+1}(\Omega )}<\infty \quad \text {and} \quad \sup \limits _{k \in {\mathbb {N}}}\,[u_k]_{W^{s, p} ({\mathbb {R}}^n)}<\infty . \end{aligned}$$
(A.3)

Up to not relabelled subsequences, there exists a weak limit \(u \in L^{q+1}(\Omega )\) such that

$$\begin{aligned} u_k \rightarrow u \quad \text {weakly in}\quad L^{q+1}(\Omega ) \end{aligned}$$
(A.4)

and thus, by the Banach-Steinhaus theorem and (A.3),

$$\begin{aligned} \Vert u\Vert _{L^{q+1}(\Omega )} \leqslant \liminf _{k \rightarrow \infty } \Vert u_k\Vert _{L^{q+1}(\Omega )}<\infty . \end{aligned}$$
(A.5)

Since \(u_k \in W^{s,p}_0(\Omega )\), by the fractional Poincaré inequality (2.13) in Lemma 2.3 and (A.3)\(_2\) we have, \(\sup \limits _{k \in {\mathbb {N}}}\Vert u_k\Vert _{L^p({\mathbb {R}}^n)}<\infty \), in turn yielding with (A.3)

$$\begin{aligned} \sup \limits _{k \in {\mathbb {N}}}\Vert u_k\Vert _{W^{s,p}({\mathbb {R}}^n)}<\infty . \end{aligned}$$
(A.6)

Letting \(s^\prime \equiv \min \{\frac{n}{2p},s\}\) implies \(0<s^\prime \leqslant s <1\). By Lemma 2.4,

$$\begin{aligned} \sup _{k \in {\mathbb {N}}}\Vert u_k\Vert _{W^{s^\prime ,p}({\mathbb {R}}^n)}<\infty . \end{aligned}$$

and, for any ball \(B_R\) satisfying \(\Omega \subset B_R\)

$$\begin{aligned} \sup _{k \in {\mathbb {N}}}\Vert u_k\Vert _{W^{s^\prime ,p}(B_R)}<\infty . \end{aligned}$$

Since \(s^\prime p \leqslant \frac{n}{2} <n\), we can apply Lemma 2.6 to get (after passing to a subsequence, if necessary)

$$\begin{aligned} u_k \rightarrow u\quad \text {strongly in}\quad L^r(B_R) \end{aligned}$$

for all r with \(1\leqslant r<\frac{np}{n-s^\prime p}\) and

$$\begin{aligned} u_k \rightarrow u \quad \text {a.e. in}\quad {\mathbb {R}}^n, \end{aligned}$$
(A.7)

which, in particular, yields \(u=0\) in \(\Omega ^c\). From Fatou’s Lemma with (A.7) and (A.6), it follows that

$$\begin{aligned} \Vert u\Vert ^p_{W^{s,p}({\mathbb {R}}^n)} \leqslant \liminf _{k \rightarrow \infty }\Vert u_k\Vert ^p_{W^{s,p}({\mathbb {R}}^n)}<\infty . \end{aligned}$$
(A.8)

Consequently, by (A.5) and (A.8), it ensures that \(u \in {\mathbb {X}}\). Moreover, thanks to the weak convergence (A.4) we have

$$\begin{aligned} \int _\Omega |u_{m-1}|^{q-1}u_{m-1}u_k \,dx\rightarrow \int _\Omega |u_{m-1}|^{q-1}u_{m-1}u\,dx \quad \text {as}\quad k \rightarrow \infty , \end{aligned}$$

this and the two displays (A.5) and (A.8) imply that

$$\begin{aligned} \inf _{w \in {\mathbb {X}}} {\mathcal {F}}(w)&=\liminf _{k \rightarrow \infty }{\mathcal {F}}(u_k) \\&= \liminf _{k \rightarrow \infty }\Bigg [\dfrac{1}{h}\int _\Omega \left( \dfrac{1}{q+1}|u_k|^{q+1}-|u_{m-1}|^{q-1}u_{m-1}u_k \right) \,dx+\dfrac{1}{2p}[u_k]^p_{W^{s,p}({\mathbb {R}}^n)}\Bigg ] \\&\geqslant \dfrac{1}{h}\int _\Omega \left( \dfrac{1}{q+1}|u|^{q+1}-|u_{m-1}|^{q-1}u_{m-1}u \right) \,dx+\dfrac{1}{2p}[u]^p_{W^{s,p}({\mathbb {R}}^n)} \\&={\mathcal {F}}(u), \end{aligned}$$

which assures that \(u \in {\mathbb {X}}\) is actually a minimizer of \({\mathcal {F}}\). Finally, a completely standard argument shows that \(\{u_m\}_{m \in {\mathbb {N}}}\) satisfies the Euler–Lagrange equation

$$\begin{aligned} 0&=\int _\Omega \dfrac{|u_m|^{q-1}u_m-|u_{m-1}|^{q-1}u_{m-1}}{h}\,\varphi \,dx \\&\quad +\dfrac{1}{2}\iint _{{\mathbb {R}}^n \times {\mathbb {R}}^n}\dfrac{U_m(x,y)}{|x-y|^{n+sp}}\left( \varphi (x)-\varphi (y)\right) \,dxdy, \quad \forall \varphi \in {\mathbb {X}}, \end{aligned}$$

finishing the proof of Lemma 3.1.

Appendix B: Boundedness

In this Appendix B, through the additional stronger assumption of boundedness of the initial datum \(u_0\), we conclude slightly stronger assertions compared to ones in the previous section (see Lemmas B.1 and B.2 and Theorem B.3).

1.1 B.1 Boundedness

In this Appendix B.1, we show the boundedness for approximating solutions of (1.1). The test function here is retrieved from [3].

Lemma B.1

(Boundedness) Suppose that \(u_0 \in W^{s, p}_0 (\Omega ) \cap L^\infty (\Omega )\). Let \({\bar{u}}_h\)\(u_h\),  \({\bar{w}}_h\),  \(w_h\)\(v_h\) and \({\bar{v}}_h\) be approximate solutions of (1.1) defined in (3.3) and (3.4). Then, these solutions are bounded in \(\Omega _\infty \):

$$\begin{aligned} \begin{aligned} \sup _{t>0} \Vert {\bar{u}}_h(t)\Vert _{L^\infty (\Omega )}&\leqslant \Vert u_0\Vert _{L^\infty (\Omega )}, \\ \sup _{t>0} \Vert u_h(t)\Vert _{L^\infty (\Omega )}&\leqslant \Vert u_0\Vert _{L^\infty (\Omega )}; \end{aligned} \end{aligned}$$
(B.1)
$$\begin{aligned} \sup _{t>0} \Vert {\bar{w}}_h(t)\Vert _{L^\infty (\Omega )},\,\,\sup _{t>0} \Vert w_h(t)\Vert _{L^\infty (\Omega )}\leqslant \Vert u_0\Vert _{L^\infty (\Omega )}^{\frac{q+1}{2}}; \end{aligned}$$
(B.2)
$$\begin{aligned} \sup _{t>0} \Vert {\bar{v}}_h(t)\Vert _{L^\infty (\Omega )},\,\,\sup _{t>0} \Vert v_h(t)\Vert _{L^\infty (\Omega )} \leqslant \Vert u_0\Vert _{L^\infty (\Omega )}^q. \end{aligned}$$
(B.3)

Proof

The estimates (B.1)\(_2\), (B.2) and (B.3) simply follow from (B.1)\(_1\) and Lemma 3.2. Following the argument developed in [27, Lemma 3.3, p. 164], we shall prove  (B.1)\(_1\). Put \(M:=\Vert u_0\Vert _{L^\infty (\Omega )}\) for brevity. In (3.2), choose a test function \(\xi _\delta (u_m)\) as

$$\begin{aligned} \xi _\delta (\sigma )=\dfrac{\sigma }{|\sigma |}\min \left\{ 1,\,\frac{(|\sigma |-M)_{+}}{\delta } \right\} \quad \text {for}\quad \delta >0. \end{aligned}$$

Note that \(\xi _\delta (\sigma )\) is clearly bounded and Lipschitz function for \(\sigma \in {\mathbb {R}}\) and thus, \(\xi _\delta (u_m) \in W^{s, p}_0(\Omega ) \cap L^\infty (\Omega )\).

Then, for \(m=1,2,\ldots \), we have

$$\begin{aligned} \frac{1}{h}\int _\Omega&\left( |u_{m}|^{q-1}u_{m}-|u_{m-1}|^{q-1}u_{m-1} \right) \xi _\delta (u_m)\,dx\nonumber \\&+\frac{1}{2}\iint _{{\mathbb {R}}^n \times {\mathbb {R}}^n}\frac{U_m(x,y)}{|x-y|^{n+sp}}\big (\xi _\delta (u_m(x))-\xi _\delta (u_m(y))\big ) \,dxdy=0. \end{aligned}$$
(B.4)

The integrand in the fractional integral of (B.4) is evaluated as follows: Since \(\xi _\delta (u_m(x))-\xi _\delta (u_m(y))\) has the same sign as \(u_m(x)-u_m(y)\) via the monotonicity of \(\xi _\delta (\sigma )\), we observe

$$\begin{aligned}&U_m(x,y)\bigl (\xi _\delta (u_m(x))-\xi _\delta (u_m(y))\bigr ) \\&=|u_m(x)-u_m(y)|^{p-2} \bigl (u_m(x)-u_m(y)\bigr ) \bigl (\xi _\delta (u_m(x))-\xi _\delta (u_m(y))\bigr ) \geqslant 0 \end{aligned}$$

on \({\mathbb {R}}^n \times {\mathbb {R}}^n\).

Dropping the fractional term of (B.4) implies

$$\begin{aligned}&\int _\Omega \frac{|u_m|^q-|u_{m-1}|^q }{h}\min \left\{ 1,\,\frac{(|u_m|-M)_+}{\delta } \right\} \,dx \leqslant 0. \end{aligned}$$
(B.5)

Thanks to the dominated convergence theorem and passing to the limit \(\delta \searrow 0\) in (B.5) we have

$$\begin{aligned} \int _{\Omega \,\cap \,\{ |u_{m}|>M\}} \frac{|u_m|^q-|u_{m-1}|^q }{h}\,dx \leqslant 0, \end{aligned}$$
(B.6)

which is equivalent to

$$\begin{aligned} \int _\Omega (|u_m|^q-M^q)_+ \,dx \leqslant \int _{\Omega \cap \{|u_m|>M\}} (|u_{m-1}|^q-M^q) \,dx. \end{aligned}$$

By neglecting the region where \(|u_{m-1}|\leqslant M \leqslant |u_m|\), the right-hand side is further estimated as

$$\begin{aligned} \int _{\Omega \cap \{|u_m|>M\}} (|u_{m-1}|^q-M^q) \,dx&\leqslant \int _{\Omega \cap \{|u_m|>M\}\cap \{|u_{m-1}|>M\}} (|u_{m-1}|^q-M^q) \,dx \\&\leqslant \int _\Omega (|u_{m-1}|^q-M^q)_+ \,dx. \end{aligned}$$

Summarizing, we have

$$\begin{aligned} \int _\Omega (|u_m|^q-M^q)_+ \,dx \leqslant \int _\Omega (|u_{m-1}|^q-M^q)_+ \,dx. \end{aligned}$$

Iterating the above display with respect to m, we obtain

$$\begin{aligned} \int _\Omega (|u_m|^q-M^q)_+ \,dx \leqslant \int _\Omega (|u_0|^q-M^q)_+ \,dx =0 \end{aligned}$$

for all \(m=1,2,\ldots \), which in turn implies \(|u_{m}|\leqslant M\) in \(\Omega \) for any \(m=1,2,\ldots \), finishing the proof. \(\square \)

Fig. 2
figure 2

Graph of \(y=\xi _\delta (\sigma )\)

By the boundedness (Lemma B.1), the convergence result in Lemma 4.7 improves as follows:

Lemma B.2

(Convergence of approximate solutions) Suppose that \(u_0 \in W^{s, p}_0 (\Omega ) \cap L^\infty (\Omega ).\) Let \({\bar{u}}_h\),  \(u_h\),  \({\bar{w}}_h\),  \(w_h\), \({\bar{v}}_h\) and \(v_h\) be the approximate solutions of (1.1) defined by (3.3) and (3.4), satisfying the convergence in Lemma 4.7. For all finite exponent \(\gamma \geqslant 1\), any bounded domain \(K \subset {\mathbb {R}}^n\) and every positive number \(T<\infty \),

$$\begin{aligned} u_h,\,{\bar{u}}_h \rightarrow u \quad&\text {strongly in}\,\,L^\gamma (K_T), \end{aligned}$$
(B.7)
$$\begin{aligned} w_h, {{{\bar{w}}}}_h \rightarrow |u|^{\frac{q - 1}{2}} u \quad&\text {strongly in}\,\,L^\gamma (K_T), \end{aligned}$$
(B.8)
$$\begin{aligned} v_h,\,{\bar{v}}_h \rightarrow |u|^{q-1}u \quad&\text {strongly in}\,\,L^\gamma (K_T) \end{aligned}$$
(B.9)

as \(h\searrow 0\).

Proof

From the boundedness (B.1) and (4.20) it follows that

$$\begin{aligned} \sup _{0<t<T}\Vert u(t)\Vert _{L^\infty (K)} \leqslant \Vert u_0\Vert _{L^\infty (\Omega )}. \end{aligned}$$
(B.10)

The boundedness (B.1), (B.10) and the convergence (4.21) with the Hölder inequality gives (B.7)\(_1\). The validity of other statements (B.7)\(_2\), (B.8) and (B.9) is shown by use of the boundedness Lemma B.1, (4.29) and (4.30). \(\square \)

1.2 B.2 A regularity of \(\varvec{\partial _t\left( |u|^{q-1}u\right) }\) in the case \(q \geqslant 1\)

Here we state additional regularity for the time-derivative, obtained from the boundedness Lemma B.1.

Theorem B.3

Let \(q \geqslant 1\). Suppose that the initial datum \(u_0 \in W^{s, p}_0 (\Omega ) \cap L^\infty (\Omega )\). Then, the weak solution u of (1.1) obtained in Theorem 1.1 satisfies \(\partial _t (|u|^{q - 1} u) \in L^2 (\Omega _\infty )\).

In order to prove Theorem B.3, we will derive the \(L^2\)-estimate of the time-derivative:

Lemma B.4

Let \(q \geqslant 1\) and \(v_h\) be the approximate solutions of (1.1) defined by (3.4). Assume that \(u_0 \in W^{s, p}_0 (\Omega ) \cap L^\infty (\Omega )\). Then the time derivatives of approximate solutions \(\{\partial _t v_h\}\) are bounded in \(L^2 (\Omega _T)\) for any positive \(T < \infty \),

$$\begin{aligned} \iint _{\Omega _T} |\partial _t v_h|^2\,dxdt \leqslant C \Vert u_0\Vert _{L^\infty (\Omega )}^{q-1} [u_0]_{W^{s,p}({\mathbb {R}}^n)}^p \end{aligned}$$
(B.11)

with a positive constant \(C=C(p,q)\).

Proof of Lemma B.4

From the energy estimate (3.12) in Lemma 3.3 and (B.1) in Lemma B.1, we obtain

$$\begin{aligned} \sum _{m=1}^N h \int _\Omega |\partial _t v_h|^2\,dx&\leqslant C \sum _{m=1}^N h \int _\Omega \left( |u_m| + |u_{m - 1}|\right) ^{2 (q - 1)} \left| \frac{u_m-u_{m-1}}{h}\right| ^2\,dx \\&\leqslant C \sum _{m=1}^N h \left( \Vert u_m\Vert _{L^\infty (\Omega )}^{q-1}+\Vert u_{m-1}\Vert _{L^\infty (\Omega )}^{q-1} \right) \\&\quad \cdot \int _\Omega \left( |u_m| + |u_{m - 1}|\right) ^{q - 1}\left| \frac{u_m-u_{m-1}}{h} \right| ^2\,dx \\&\!\!\!{\mathop {\leqslant }\limits ^{(B.1)}}C\Vert u_0\Vert _{L^\infty (\Omega )}^{q-1}\int _0^{t_N}\int _{\Omega } \left( |{{{\bar{u}}}}_h (x,t)| + |{{{\bar{u}}}}_h (x,t-h)|\right) ^{q - 1} |\partial _t u_h(x,t) |^2\,dxdt \\&\!\!\!\!{\mathop {\leqslant }\limits ^{(3.12)}} C\Vert u_0\Vert _{L^\infty (\Omega )}^{q-1}[u_0]_{W^{s,p}({\mathbb {R}}^n)}^p, \end{aligned}$$

which finishes the proof of (B.11).

We report the proof of Theorem B.3.

Proof of Theorem B.3

Let \(q \geqslant 1\). By (B.11) in Lemma B.4, \(\{\partial _t v_h\}_{h>0}\) is bounded in \(L^2 (\Omega _T)\) and thus, there are a subsequence \(\{\partial _t v_h\}_{h>0}\) (also labelled with h) and a limit function \(\vartheta \in L^2(\Omega _T)\) such that, as \(h \searrow 0\),

$$\begin{aligned} \partial _t v_h \rightarrow \vartheta \quad \text {weakly in}\,\,\,L^2(\Omega _T). \end{aligned}$$
(B.12)

By the convergence (B.9) in Lemma B.2 we pass to the limit as \(h \searrow 0\) in the identity

$$\begin{aligned} \iint _{\Omega _T}\partial _t v_h\cdot \varphi \,dxdt =-\iint _{\Omega _T}v_h\,\partial _t \varphi \,dxdt \end{aligned}$$

for every \(\varphi \in C^\infty _0(\Omega _T)\) to obtain from (4.37) that

$$\begin{aligned} \vartheta =\partial _t\Big (|u|^{q-1}u\Big )\quad \text {in}\,\,L^2(\Omega _T). \end{aligned}$$
(B.13)

As a consequence, by the convergence (B.9) in Lemma B.2 with (B.11) in Lemma B.4, there holds that

$$\begin{aligned} \left\| \partial _t \Big (|u|^{q-1}u\Big )\right\| _{L^2(\Omega _T)}^2 \leqslant C\Vert u_0\Vert _{L^\infty (\Omega )}^{q-1}[u_0]_{W^{s,p}({\mathbb {R}}^n)}^p. \end{aligned}$$

Since the right-hand side is independent of T, we are allowed to pass to the limit \(T \nearrow \infty \) in the last display, which finishes the proof of Theorem B.3. \(\square \)

Appendix C: A space-time fractional Sobolev inequality

In this appendix, we accomplish in Lemma C.1 a general inequality interpolating by the Gagliardo seminorm in time-space domain in the special case where the function is weakly differentiable with respect to time. The inequality in Lemma C.1 is used essentially as the key ingredient for Lemma 4.3

The following inequality gives an interpolation between fractional Sobolev semi-norms and the integral of time derivative.

Lemma C.1

(Space-time fractional Sobolev inequality) Let \(K \subset {\mathbb {R}}^n\) be a bounded domain and let \(I:=(0,T)\) with \(0<T<\infty \). Let \(s^\prime , {\bar{s}}\) be two exponents obeying \(0<s^\prime<{\bar{s}} <1\). Then it holds

$$\begin{aligned} {[}f]_{W^{s^\prime ,1}(K_T)} \leqslant C(n,s^\prime , {\bar{s}},K,T) \left( \Vert \partial _t f\Vert _{L^1(K_T)}+\int _I[f(\cdot , t)]_{W^{{\bar{s}},1}(K)}\,dt\right) , \end{aligned}$$
(C.1)

where the integrals appearing in the right-hand side are assumed to be finite.

Proof

To begin, we divide the Gagliardo semi-norm into two terms:

$$\begin{aligned} {[}f]_{W^{s^\prime , 1}(K_T)} \quad&\leqslant \quad \iint _{I \times I}\iint _{K \times K}\dfrac{|f(x,t)-f(x,t^\prime )|}{\left( \sqrt{|x-x'|^2+(t-t')^2}\right) ^{(n+1)+s^\prime }}\,dxdx'dtdt' \nonumber \\ \quad&\quad \quad + \iint _{I \times I}\iint _{K \times K}\dfrac{|f(x,t^\prime )-f(x^\prime ,t^\prime )|}{\left( \sqrt{|x-x'|^2+(t-t')^2}\right) ^{(n+1)+s^\prime }}\,dxdx'dtdt'\nonumber \\ \quad&=: \quad (\textrm{I})+(\textrm{II}). \end{aligned}$$
(C.2)

By the assumption it holds \(1+(s^\prime -{\bar{s}}) >0\), thereby giving

$$\begin{aligned} (\textrm{I})&=\iint _{I\times I}\iint _{K \times K} \dfrac{|f(x,t)-f(x,t^\prime )|}{\left( \sqrt{|x-x'|^2+(t-t')^2}\right) ^{1+{\bar{s}}}} \cdot \frac{dxdx'dtdt' }{\left( \sqrt{|x-x'|^2+(t-t')^2}\right) ^{n+(s^\prime -{\bar{s}})}} \nonumber \\&\leqslant \int _{K}\left( \,\,\iint _{I\times I}\dfrac{|f(x,t^\prime )-f(x,t^\prime )|}{|t-t'|^{1+{\bar{s}}}} \,dtdt' \right) \left( \,\int _{K_{x^\prime }}\frac{dx^\prime }{|x-x'|^{n+(s^\prime -{\bar{s}})}} \right) \,dx \nonumber \\&= \int _{K}\left[ \,\,\int _I \left( \,\,\int _{\{\tau \in (-T,T)\,: \,t+\tau \in I\}}\dfrac{|f(x,t^\prime )-f(x,\tau +t)|}{|t-t'|^{1+{\bar{s}}}} \,d\tau \right) dt' \right] \left( \,\int _{K_{x^\prime }}\frac{dx^\prime }{|x-x'|^{n+(s^\prime -{\bar{s}})}} \right) \,dx. \end{aligned}$$
(C.3)

Due to the fundamental theorem of calculus,

$$\begin{aligned} \big |f(x,t)-f(x,\tau +t)\big | = \left| \int _0^1 \dfrac{d}{d\sigma } f(x,t+\sigma \tau ) \,d\sigma \right|&\leqslant |\tau | \int _0^1 \Big |\partial _t f(x,t+\sigma \tau )\Big |\,d\tau , \end{aligned}$$

this together with (C.2) and Fubini’s theorem gives

$$\begin{aligned} (\textrm{I})&\leqslant \int _{K}\int _0^1\left[ \,\,\int _{-T}^T\dfrac{1}{|\tau |^{{\bar{s}}}} \left( \,\,\int _{\{t \in I\,: \,t+\tau \in I\}}\Big |\partial _tf(x, t+\sigma \tau )\Big | \,dt \right) d\tau \right] \left( \,\int _{K_{x^\prime }}\frac{dx^\prime }{|x-x'|^{n+(s^\prime -{\bar{s}})}} \right) \,d\sigma dx \nonumber \\&\leqslant \left( \,\,\int _{-T}^T\dfrac{1}{|\tau |^{{\bar{s}}}} d\tau \right) \int _K\Vert \partial _tf(x,\cdot )\Vert _{L^1(I)}\left( \,\int _{K_{x^\prime }}\frac{dx^\prime }{|x-x'|^{n+(s^\prime -{\bar{s}})}} \right) \,dx. \end{aligned}$$
(C.4)

Here, via the change of variable \(\varrho =|x-x'|\) we have

$$\begin{aligned} \int _{K_{x^\prime }}\frac{dx^\prime }{|x-x'|^{n+(s^\prime -{\bar{s}})}}&\leqslant C(n)\int _0^{{{\,\textrm{diam}\,}}K} \frac{d\varrho }{\varrho ^{1+(s^\prime -{\bar{s}})}}=\frac{({{\,\textrm{diam}\,}}K)^{{\bar{s}}-s^\prime }}{{\bar{s}}-s^\prime }<\infty . \end{aligned}$$
(C.5)

Similarly, by the condition \(0<{\bar{s}}<1\), the integral \(\int _{-T}^T\frac{1}{|\tau |^{{\bar{s}}}} d\tau \) appearing in (C.4) takes a finite value depending T only. Combining this with (C.4) and (C.5), we get

$$\begin{aligned} (\textrm{I})&\leqslant C(n,s^\prime ,{\bar{s}},T)\int _K\Vert \partial _tf(x,\cdot )\Vert _{L^1(I)}\,dx \nonumber \\&=C(n,s^\prime ,{\bar{s}},T)\Vert \partial _tf\Vert _{L^1(K \times I)}. \end{aligned}$$
(C.6)

On the other hand, the integration \((\textrm{II})\) is estimated as

$$\begin{aligned} (\textrm{II})&\leqslant \iint _{I\times I}\iint _{K \times K} \dfrac{|f(x,t^\prime )-f(x^\prime ,t^\prime )|}{\left( \sqrt{|x-x'|^2+(t-t')^2}\right) ^{n+{\bar{s}}}} \cdot \frac{dxdx'dtdt' }{\left( \sqrt{|x-x'|^2+(t-t')^2}\right) ^{1+s^\prime -{\bar{s}}}} \nonumber \\&\leqslant \iint _{I \times I}\iint _{K \times K} \dfrac{|f(x,t^\prime )-f(x^\prime ,t^\prime )|}{|x-x'|^{n+{\bar{s}}}}\cdot \frac{dxdx'dtdt' }{|t-t'|^{1+(s^\prime -{\bar{s}})}} \nonumber \\&=\int _{I}\left( \,\int _{I_t}\dfrac{dt}{|t-t'|^{1+(s^\prime -{\bar{s}})}} \right) [f(\cdot , t^\prime )]_{W^{{\bar{s}},1}(K)}\,dt^\prime \nonumber \\&\leqslant C \int _{I}\left( \,\,\int _{-T}^{T}\dfrac{d\tau }{|\tau |^{1+(s^\prime -{\bar{s}})}} \right) \,[f(\cdot , t^\prime )]_{W^{{\bar{s}},1}({\mathbb {R}}^n)}\,dt^\prime \nonumber \\&=C(n,s,{\bar{s}},T)\int _{I}[f(\cdot , t^\prime )]_{W^{{\bar{s}},1}(K)}\,dt^\prime , \end{aligned}$$
(C.7)

where, in the penultimate line, we computed

$$\begin{aligned} \int _{-T}^{T}\dfrac{d\tau }{|\tau |^{1+(s^\prime -{\bar{s}})}} =\frac{2T^{{\bar{s}}-s^\prime }}{{\bar{s}}-s^\prime }. \end{aligned}$$

Finally, merging (C.6),  (C.7) in (C.3), we end up with the conclusion (C.1). \(\square \)

Appendix D: Proof of Lemma 5.1

This appendix is devoted to the proof of Lemma 5.1.

Proof of Lemma 5.1

At the beginning, we verify that \([0,\infty ) \ni t \mapsto v_h (t)\) is (uniformly in h) weakly continuous in \(L^{\frac{q+1}{q}} (\Omega )\)Footnote 1. Let \(t_2>t_1 \geqslant 0\) be arbitrarily taken. Testing the approximating equation (3.5) with \(\psi (x)\text{1 }\hspace{-0.25em}\text{ l}_{(t_1,t_2)}(t)\), where \(\psi =\psi (x) \in C^\infty ({\mathbb {R}}^n)\) with \(\textrm{supp}\,(\psi ) \subset \Omega \) and \(\text{1 }\hspace{-0.25em}\text{ l}_{(t_1,t_2)}(t)\) is the usual Lipschitz approximation of characteristic function of the time-interval \((t_1, t_2)\). By using of Hölder’s inequality and  (3.13) in Lemma 3.3, it holds that

$$\begin{aligned} \left| \,\,\int _{\Omega }\big (v_h(t_2)-v_h(t_1)\big ) \psi \,dx \right|&=\left| -\frac{1}{2}\int _{t_1}^{t_2}\iint _{{\mathbb {R}}^n \times {\mathbb {R}}^n}\frac{\overline{U}_h(x,y,t)}{|x-y|^{n+sp}}\big (\psi (x)-\psi (y)\big )\,dxdydt \right| \nonumber \\&\leqslant \frac{1}{2}\int _{t_1}^{t_2}[{\bar{u}}_h(t)]_{W^{s,p}({\mathbb {R}}^n)}^{p-1}\,dt\cdot [\psi ]_{W^{s,p}({\mathbb {R}}^n)} \nonumber \\&\!\!{\mathop {\leqslant }\limits ^{(3.13)}} \frac{1}{2}[u_0]_{W^{s,p}({\mathbb {R}}^n)}^{p-1}[\psi ]_{W^{s,p}({\mathbb {R}}^n)}(t_2-t_1), \end{aligned}$$
(D.1)

whenever \(t_2>t_1 \geqslant 0\). By the density of \(C^\infty _0 (\Omega )\) in \(L^{q+1} (\Omega )\), Hölder’s inequality and (3.13) in Lemma 3.3 again, the above display implies that \([0,\infty ) \ni t \mapsto v_h (t)\) is (uniformly in h) weakly continuous in \(L^{\frac{q+1}{q}} (\Omega )\), as desired.

Next, for \(\varepsilon >0\) small enough, we define

$$\begin{aligned} \zeta _\varepsilon (t):={\left\{ \begin{array}{ll} \dfrac{t}{\varepsilon }\quad &{}\text {if}\quad 0 \leqslant t \leqslant \varepsilon , \\ 1 \quad &{}\text {if}\quad t>\varepsilon . \end{array}\right. } \end{aligned}$$

In the weak formulation (3.5) testing with \(\zeta _\varepsilon (t)\varphi \), where \(\varphi \in C^\infty ({\mathbb {R}}^n \times [0,T))\) has support contained in \(\Omega \times [0,T)\), we get

By definition it holds that \(v_h(0)=|u_0(x)|^{q-1}u_0(x)\) and, as shown above, \([0,\infty ) \ni t \mapsto v_h(t)\) is weakly continuous in \(L^{\frac{q+1}{q}}(\Omega )\), thereby taking the limit \(\varepsilon \searrow 0\) in the last display yields

$$\begin{aligned}{} & {} -\iint _{\Omega _T} v_h\,\partial _t\varphi \,dxdt+\frac{1}{2}\int _0^T\iint _{{\mathbb {R}}^n \times {\mathbb {R}}^n}\frac{\overline{U}_h(x,y,t)}{|x-y|^{n+sp}}\big (\varphi (x,t)-\varphi (y,t)\big )\,dxdydt\\{} & {} \quad =\int _\Omega |u_0|^{q-1}u_0\varphi (0)\,dx, \end{aligned}$$

therefore, thanks to convergences (4.37) in Lemma 4.8 and (5.3) in Step 2 of the proof of Theorem 1.1, sending \(h \searrow 0\) renders that

$$\begin{aligned}&-\iint _{\Omega _T} |u|^{q-1}u\,\partial _t\varphi \,dxdt \\&\quad \quad +\frac{1}{2}\int _0^T\iint _{{\mathbb {R}}^n \times {\mathbb {R}}^n}\frac{U(x,y,t)}{|x-y|^{n+sp}}\big (\varphi (x,t)-\varphi (y,t)\big )\,dxdydt=\int _\Omega |u_0|^{q-1}u_0\varphi (0)\,dx, \end{aligned}$$

as wanted. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, N., Misawa, M., Nakamura, K. et al. Existence for doubly nonlinear fractional p-Laplacian equations. Annali di Matematica 203, 2481–2527 (2024). https://doi.org/10.1007/s10231-024-01453-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-024-01453-z

Keywords

Mathematics Subject Classification

Navigation