Skip to main content
Log in

Analysis of the Diffuse Domain Method for Second Order Elliptic Boundary Value Problems

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

The diffuse domain method for partial differential equations on complicated geometries recently received strong attention in particular from practitioners, but many fundamental issues in the analysis are still widely open. In this paper, we study the diffuse domain method for approximating second order elliptic boundary value problems posed on bounded domains and show convergence and rates of the approximations generated by the diffuse domain method to the solution of the original second order problem when complemented by Robin, Dirichlet or Neumann conditions. The main idea of the diffuse domain method is to relax these boundary conditions by introducing a family of phase-field functions such that the variational integrals of the original problem are replaced by a weighted average of integrals of perturbed domains. From a functional analytic point of view, the phase-field functions naturally lead to weighted Sobolev spaces for which we present trace and embedding results as well as various types of Poincaré inequalities with constants independent of the domain perturbations. Our convergence analysis is carried out in such spaces as well, but allows to draw conclusions also about unweighted norms applied to restrictions on the original domain. Our convergence results are supported by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Abels, K. F. Lam, and B. Stinner. Analysis of the diffuse domain approach for a bulk-surface coupled PDE system. SIAM J. Math. Anal., 47(5):3687–3725, 2015. doi:10.1137/15M1009093.

  2. R. A. Adams. Sobolev spaces. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65.

  3. S. Aland, J. Lowengrub, and A. Voigt. Two-phase flow in complex geometries: a diffuse domain approach. CMES Comput. Model. Eng. Sci., 57(1):77–107, 2010.

    MathSciNet  MATH  Google Scholar 

  4. J. M. Arrieta, A. Rodríguez-Bernal, and J. D. Rossi. The best Sobolev trace constant as limit of the usual Sobolev constant for small strips near the boundary. Proc. Roy. Soc. Edinburgh Sect. A, 138(2):223–237, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  5. I. Babuška. The finite element method with penalty. Math. Comp., 27:221–228, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. W. Barrett and C. M. Elliott. Finite element approximation of the Dirichlet problem using the boundary penalty method. Numer. Math., 49(4):343–366, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. W. Barrett and C. M. Elliott. Fitted and unfitted finite-element methods for elliptic equations with smooth interfaces. IMA J. Numer. Anal., 7(3):283–300, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. W. Barrett and C. M. Elliott. A practical finite element approximation of a semidefinite Neumann problem on a curved domain. Numer. Math., 51(1):23–36, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Bastian and C. Engwer. An unfitted finite element method using discontinuous Galerkin. Internat. J. Numer. Methods Engrg., 79(12):1557–1576, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Bertoluzza, M. Ismail, and B. Maury. The fat boundary method: semi-discrete scheme and some numerical experiments. In Domain decomposition methods in science and engineering, volume 40 of Lect. Notes Comput. Sci. Eng., pages 513–520. Springer, Berlin, 2005.

  11. A. Boulkhemair and A. Chakib. On the uniform Poincaré inequality. Comm. Partial Differential Equations, 32(7-9):1439–1447, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Braess. Finite elements. Cambridge University Press, Cambridge, third edition, 2007. Theory, fast solvers, and applications in elasticity theory, Translated from the German by Larry L. Schumaker.

  13. F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge, 8(R-2):129–151, 1974.

  14. M. C. Delfour and J.-P. Zolésio. Shapes and geometries, volume 22 of Advances in Design and Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 2011. Metrics, analysis, differential calculus, and optimization.

  15. H. Egger and M. Schlottbom. Analysis and regularization of problems in diffuse optical tomography. SIAM J. Math. Anal., 42(5):1934–1948, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  16. C. M. Elliott and B. Stinner. Analysis of a diffuse interface approach to an advection diffusion equation on a moving surface. Math. Models Methods Appl. Sci., 19(5):787–802, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  17. C. M. Elliott, B. Stinner, V. Styles, and R. Welford. Numerical computation of advection and diffusion on evolving diffuse interfaces. IMA J. Numer. Anal., 31(3):786–812, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Esedo\(\bar{\rm g}\)lu, A. Rätz, and M. Röger. Colliding interfaces in old and new diffuse-interface approximations of Willmore-flow. Commun. Math. Sci., 12(1):125–147, 2014.

  19. S. Franz, R. Gärtner, H.-G. Roos, and A. Voigt. A note on the convergence analysis of a diffuse-domain approach. Comput. Methods Appl. Math., 12(2):153–167, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Glowinski, T.-W. Pan, and J. Périaux. A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Engrg., 111(3-4):283–303, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. B. Greer. An improvement of a recent Eulerian method for solving PDEs on general geometries. J. Sci. Comput., 29(3):321–352, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Grisvard. Elliptic Problems in Nonsmooth Domains. Pitman, Boston, 1985.

    MATH  Google Scholar 

  23. K. Gröger. A \(W^{1,p}\)-estimate for solutions to mixed boundary value problems for second order elliptic differential equations. Math. Ann., 283(4):679–687, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  24. W. Hackbusch and S. A. Sauter. Composite finite elements for the approximation of PDEs on domains with complicated micro-structures. Numer. Math., 75(4):447–472, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Hansbo and P. Hansbo. An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Engrg., 191(47-48):5537–5552, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  26. T. Horiuchi. The imbedding theorems for weighted Sobolev spaces. J. Math. Kyoto Univ., 29(3):365–403, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Kufner. Weighted Sobolev spaces. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1985. Translated from the Czech.

  28. K. Y. Lervåg and J. Lowengrub. Analysis of the diffuse-domain method for solving PDEs in complex geometries. Commun. Math. Sci., 13(6):1473–1500, 2015. doi:10.4310/CMS.2015.v13.n6.a6.

  29. R. J. LeVeque and Z. L. Li. The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal., 31(4):1019–1044, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  30. X. Li, J. Lowengrub, A. Rätz, and A. Voigt. Solving PDEs in complex geometries: a diffuse domain approach. Commun. Math. Sci., 7(1):81–107, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  31. F. Liehr, T. Preusser, M. Rumpf, S. Sauter, and L. O. Schwen. Composite finite elements for 3D image based computing. Comput. Vis. Sci., 12(4):171–188, 2009.

    Article  MathSciNet  Google Scholar 

  32. N. G. Meyers. An \({L}^p\)-estimate for the gradient of solutions of second order elliptic divergence equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, 17(3):189–206, 1963.

    MATH  Google Scholar 

  33. J. Nečas. Direct methods in the theory of elliptic equations. Springer Monographs in Mathematics. Springer, Heidelberg, 2012. Translated from the 1967 French original by Gerard Tronel and Alois Kufner, Editorial coordination and preface by Šárka Nečasová and a contribution by Christian G. Simader.

  34. B. Opic and A. Kufner. Hardy-type inequalities, volume 219 of Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, Harlow, 1990.

  35. F. Otto, P. Penzler, A. Rätz, T. Rump, and A. Voigt. A diffuse-interface approximation for step flow in epitaxial growth. Nonlinearity, 17(2):477–491, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Parvizian, A. Düster, and E. Rank. Finite cell method: \(h\)-extension for embedded domain problems in solid mechanics. Comput. Mech., 41(1):121–133, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  37. C. S. Peskin. Numerical analysis of blood flow in the heart. J. Computational Phys., 25(3):220–252, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Rätz. A new diffuse-interface model for step flow in epitaxial growth. IMA Journal of Applied Mathematics, 2014.

  39. A. Rätz, A. Voigt, et al. Pde’s on surfaces—a diffuse interface approach. Communications in Mathematical Sciences, 4(3):575–590, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  40. M. G. Reuter, J. C. Hill, and R. J. Harrison. Solving PDEs in irregular geometries with multiresolution methods I: Embedded Dirichlet boundary conditions. Comput. Phys. Commun., 183(1):1–7, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  41. A. Sarthou, S. Vincent, J. P. Caltagirone, and P. Angot. Eulerian-Lagrangian grid coupling and penalty methods for the simulation of multiphase flows interacting with complex objects. Internat. J. Numer. Methods Fluids, 56(8):1093–1099, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  42. K. E. Teigen, P. Song, J. Lowengrub, and A. Voigt. A diffuse-interface method for two-phase flows with soluble surfactants. J. Comput. Phys., 230(2):375–393, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  43. H. Triebel. Theory of function spaces. III, volume 100 of Monographs in Mathematics. Birkhäuser Verlag, Basel, 2006.

  44. Z. Zhang and A. Prosperetti. A second-order method for three-dimensional particle simulation. J. Comput. Phys., 210(1):292–324, 2005.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

MB and MS acknowledge support by ERC via Grant EU FP 7 - ERC Consolidator Grant 615216 LifeInverse. MB acknowledges support by the German Science Foundation DFG via EXC 1003 Cells in Motion Cluster of Excellence, Münster, Germany. OLE acknowledges support by DAAD for his 1 year research stay at WWU Münster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Schlottbom.

Additional information

Communicated by Douglas N. Arnold.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burger, M., Elvetun, O.L. & Schlottbom, M. Analysis of the Diffuse Domain Method for Second Order Elliptic Boundary Value Problems. Found Comput Math 17, 627–674 (2017). https://doi.org/10.1007/s10208-015-9292-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-015-9292-6

Keywords

Mathematics Subject Classification

Navigation