Skip to main content
Log in

Continuous-discrete state-space modeling of panel data with nonlinear filter algorithms

  • Original Paper
  • Published:
AStA Advances in Statistical Analysis Aims and scope Submit manuscript

Abstract

Continuous time models with sampled data possess several advantages over conventional discrete time series and panel models (cf., e.g. special issue Stat. Neerl. 62(1), 2008). For example, data with unequal time intervals between the waves can be treated efficiently, since the model parameters of the dynamical system model are not affected by the measurement process. The continuous-discrete state space model is a combination of continuous time dynamics (stochastic differential equations, SDE) and discrete time noisy measurements.

Maximum likelihood (ML) estimation of linear panel models is discussed using Kalman filtering and structural equations models (SEM). Pure time series and correlated panel data (e.g. with random time effects) can be treated exactly by SEM methods.

Nonlinear panel models are estimated by approximate filtering methods such as the extended Kalman filter (EKF), the local linearization filter (LLF), the Gauss–Hermite filter (GHF) and the unscented Kalman filter (UKF). Again, correlated panels are treated by stacking the panel units in a vector Itô equation.

Finally, spatial dynamical models are discussed. The state variables are random fields given as solutions of stochastic partial differential equations (SPDE), driven by a space–time white noise. Furthermore, the fields are filtered and estimated with noisy and sampled measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrikosov, A., Gorkov, L., Dzyaloshinsky, I.: Methods of Quantum Field Theory in Statistical Physics. Dover, New York (1963)

    MATH  Google Scholar 

  • Aït-Sahalia, Y.: Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach. Econometrica 70(1), 223–262 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Aït-Sahalia, Y.: Closed-form likelihood expansions for multivariate diffusions. Ann. Stat. 36(2), 906–937 (2008)

    Article  MATH  Google Scholar 

  • Arasaratnam, I., Haykin, S., Elliott, R.J.: Discrete-time nonlinear filtering algorithms using Gauss–Hermite quadrature. Proc. IEEE 95, 953–977 (2007)

    Article  Google Scholar 

  • Arnold, L.: Stochastic Differential Equations. Wiley, New York (1974)

    MATH  Google Scholar 

  • Baltagi, B., Kao, C., Na, S.: Test of hypotheses in panel data models when the regressor and disturbances are possibly nonstationary. Adv. Stat. Anal. (2011) this volume

  • Bartlett, M.: On the theoretical specification and sampling properties of autocorrelated time-series. J. R. Stat. Soc. 7(Supplement), 27–41 (1946)

    MathSciNet  Google Scholar 

  • Bergstrom, A.: Non recursive models as discrete approximations to systems of stochastic differential equations (1966). In: Bergstrom, A. (ed.) Statistical Inference in Continuous Time Models, pp. 15–26. North Holland, Amsterdam (1976)

    Google Scholar 

  • Bergstrom, A.: The history of continuous-time econometric models. Econom. Theory 4, 365–383 (1988)

    Article  MathSciNet  Google Scholar 

  • Beskos, A., Papaspiliopoulos, O., Roberts, G., Fearnhead, P.: Exact and efficient likelihood-based inference for discretely observed diffusion processes (with discussion). J. R. Stat. Soc. B 68, 333–382 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–654 (1973)

    Article  Google Scholar 

  • Blinnikov, S., Moessner, R.: Expansions for nearly gaussian distributions. Astron. Astrophys. Suppl. Ser. 130(1), 193–205 (1998)

    Article  Google Scholar 

  • Bresson, G., Hsiao, C.: A functional connectivity approach for modeling cross-sectional dependence with an application to the estimation of hedonic housing prices in Paris. Adv. Stat. Anal. (2011) this volume

  • Bresson, G., Hsiao, C., Pirotte, A.: Assessing the contribution of R & D to total factor productivity—a Bayesian approach to account for heterogeneity and heteroscedasticity. Adv. Stat. Anal. (2011) this volume

  • Challa, S., Bar-Shalom, Y., Krishnamurthy, V.: Nonlinear filtering using Gauss–Hermite quadrature and generalized edgeworth series. In: Proceedings of the American Control Conference, vol. 5, pp. 3397–3401. IEEE Press, San Diego (1999)

    Google Scholar 

  • Challa, S., Bar-Shalom, Y., Krishnamurthy, V.: Nonlinear filtering via generalized edgeworth series and Gauss–Hermite quadrature. IEEE Trans. Signal Process. 48, 1816–1820 (2000)

    Article  Google Scholar 

  • Coleman, J.: The mathematical study of change. In: Blalock, H., Blalock, A.B. (eds.) Methodology in Social Research, pp. 428–478. McGraw-Hill, New York (1968)

    Google Scholar 

  • Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, New York (1992)

    Book  MATH  Google Scholar 

  • Dennis, J., Jr., Schnabel, R.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice Hall, Englewood Cliffs (1983)

    MATH  Google Scholar 

  • Doreian, P., Hummon, N.: Modelling Social Processes. Elsevier, New York (1976)

    Google Scholar 

  • Durham, G.B., Gallant, A.R.: Numerical techniques for simulated maximum likelihood estimation of stochastic differential equations. J. Bus. Econ. Stat. 20, 297–316 (2002)

    Article  MathSciNet  Google Scholar 

  • Einstein, A.: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 4(17), 549–560 (1905)

    Article  Google Scholar 

  • Elerian, O., Chib, S., Shephard, N.: Likelihood inference for discretely observed nonlinear diffusions. Econometrica 69(4), 959–993 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Faris, W., Jona-Lasinio, G.: Large fluctuations for a nonlinear heat equation with noise. J. Phys. A, Math. Gen. 15, 3025–3055 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Fearnhead, P., Papaspiliopoulos, O., Roberts, G.O.: Particle filters for partially-observed diffusions. J. R. Stat. Soc. B 70, 755–777 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Feller, W.: Two singular diffusion problems. Ann. Math. 54, 173–182 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  • Frey, M.: A wiener filter, state-space flux-optimal control against escape from a potential well. IEEE Trans. Autom. Control 41(2), 216–223 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Funaki, T.: Random motion of strings and related stochastic evolution equations. Nagoya Math. J. 89, 129–193 (1983)

    MathSciNet  MATH  Google Scholar 

  • Gunther, J., Beard, R., Wilson, J., Oliphant, T., Stirling, W.: Fast nonlinear filtering via Galerkin’s method. In: Proceedings of the 1997 American Control Conference, Albuquerque, NM (1997). Digital Object Identifier: doi:10.1109/ACC.1997.611969

    Google Scholar 

  • Gyöngy, I.: Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise I. Potential Anal. 9, 1–25 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Gyöngy, I.: Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise II. Potential Anal. 11, 1–37 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Haken, H.: Synergetics. Springer, Berlin (1977)

    Book  Google Scholar 

  • Hamerle, A., Nagl, W., Singer, H.: Problems with the estimation of stochastic differential equations using structural equations models. J. Math. Sociol. 16(3), 201–220 (1991)

    Article  MATH  Google Scholar 

  • Hamerle, A., Nagl, W., Singer, H.: Identification and estimation of continuous time dynamic systems with exogenous variables using panel data. Econom. Theory 9, 283–295 (1993)

    Article  MathSciNet  Google Scholar 

  • Hansen, L., Sargent, T.: The dimensionality of the aliasing problem in models with rational spectral density. Econometrica 51, 377–387 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Harvey, A., Stock, J.: The estimation of higher order continuous time autoregressive models. Econom. Theory 1, 97–112 (1985)

    Article  Google Scholar 

  • Hauptmann, H., Schmid, F.: Spezifikations und Schätzprobleme bei dynamischen Systemen. In: Hauptmann, H., Schenk, K. (eds.) Anwendungen der Systemtheorie und Kybernetik in Wirtschaft und Verwaltung. Dunker und Humblot, Berlin (1980)

    Google Scholar 

  • Herings, J.: Static and Dynamic Aspects of General Disequilibrium Theory. Kluwer Academic, Dordrecht (1996)

    MATH  Google Scholar 

  • Holden, H., Øksendal, B., Ubøe, J., Zhang, T.: Stochastic Partial Differential Equations. Birkhäuser, Boston (1996)

    MATH  Google Scholar 

  • Itô, K., Xiong, K.: Gaussian filters for nonlinear filtering problems. IEEE Trans. Autom. Control 45(5), 910–927 (2000)

    Article  MATH  Google Scholar 

  • Jazwinski, A. Stochastic Processes and Filtering Theory. Academic Press, New York (1970)

    MATH  Google Scholar 

  • Jennrich, R., Bright, P.: Fitting systems of linear differential equations using computer generated exact derivatives. Technometrics 18(4), 385–392 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  • Jensen, B., Poulsen, R.: Transition densities of diffusion processes: numerical comparison of approximation techniques. Inst. Invest. 2002(Summer), 18–32 (2002)

    Google Scholar 

  • Jetschke, G.: On the equivalence of different approaches to stochastic partial differential equations. Math. Nachr. 128, 315–329 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Jetschke, G.: Large deviations of a diffusion in a bistable infinite-dimensional potential. In: Stochastic Differential Systems, pp. 51–60. Springer, Berlin (1987)

    Chapter  Google Scholar 

  • Jetschke, G.: Lattice approximation of a nonlinear stochastic partial differential equation with white noise. In: International Series of Numerical Mathematics, vol. 102, pp. 107–126. Birkhäuser, Basel (1991)

    Google Scholar 

  • Jones, R.: Fitting multivariate models to unequally spaced data. In: Parzen, E. (ed.) Time Series Analysis of Irregularly Observed Data, pp. 158–188. Springer, New York (1984)

    Google Scholar 

  • Jones, R.: Longitudinal Data with Serial Correlation: A State Space Approach. Chapman and Hall, New York (1993)

    MATH  Google Scholar 

  • Jones, R., Ackerson, L.: Serial correlation in unequally spaced longitudinal data. Biometrika 77, 721–731 (1990)

    Article  MathSciNet  Google Scholar 

  • Jones, R., Boadi-Boateng, F.: Unequally spaced longitudinal data with AR(1) serial correlation. Biometrics 47, 161–175 (1991)

    Article  Google Scholar 

  • Julier, S., Uhlmann, J.: A new extension of the Kalman filter to nonlinear systems. In: The 11th International Symposium on Aerospace/Defense Sensing, Simulation and Control, Orlando, Florida (1997)

    Google Scholar 

  • Julier, S., Uhlmann, J., Durrant-White, H.F.: A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Autom. Control 45(3), 477–482 (2000)

    Article  MATH  Google Scholar 

  • Kalbfleisch, J., Lawless, J.: The analysis of panel data under a Markov assumption. J. Am. Stat. Assoc. 80, 863–871 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Kalman, R.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35–45 (1960). http://www.cs.unc.edu/~welch/media/pdf/Kalman1960.pdf

    Article  Google Scholar 

  • Kappler, E.: Versuche zur Messung der Avogadro-Loschmidtschen Zahl aus der Brownschen Bewegung einer Drehwaage. Ann. Phys. 11, 233–256 (1931)

    Article  Google Scholar 

  • Kirsch, W., Metzger, B.: The integrated density of states for random Schrödinger operators. In: Gesztesy, F., Deift, P., Galvez, C., Perry, P., Schlag, W. (eds.) Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, pp. 649–696 (2007)

    Google Scholar 

  • Kitagawa, G.: Monte Carlo filter and smoother for non-gaussian nonlinear state space models. J. Comput. Graph. Stat. 5(1), 1–25 (1996)

    Article  MathSciNet  Google Scholar 

  • Kloeden, P., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)

    MATH  Google Scholar 

  • Koopmans, T.: Models involving a continuous time variable. In: Koopmans, T. (ed.) Statistical Inference in Dynamic Economic Models. Wiley, New York (1950)

    Google Scholar 

  • Kotelenez, P.: Stochastic Ordinary and Stochastic Partial Differential Equations. Springer, Berlin (2008)

    MATH  Google Scholar 

  • Langevin, P.: Sur la théorie du mouvement Brownien. C. R. Acad. Sci. Paris 146, 530–533 (1908)

    MATH  Google Scholar 

  • Liptser, R., Shiryayev, A.: Statistics of Random Processes, vols. I and II, 2nd edn. Springer, New York (2001)

    Google Scholar 

  • Mardia, K., Kent, J., Bibby, J.: Multivariate Analysis. Academic Press, London (1979)

    MATH  Google Scholar 

  • Mazzoni, T.: Fast continuous-discrete DAF-filters. Technical Report (Diskussionsbeiträge Fachbereich Wirtschaftswissenschaft) 445, FernUniversität in Hagen (2009). http://www.fernuni-hagen.de/FBWIWI/forschung/beitraege/pdf/db445.pdf

  • McArdle, J.J.: Longitudinal dynamic analyses of cognition in the health and retirement study panel. Adv. Stat. Anal. (2011) this volume

  • Merton, R.: Continuous-Time Finance. Blackwell, Cambridge (1990)

    Google Scholar 

  • Möbus, C., Nagl, W.: Messung, Analyse und Prognose von Veränderungen (Measurement, analysis and prediction of change; in German). In: Hypothesenprüfung. Serie Forschungsmethoden der Psychologie der Enzyklopädie der Psychologie, vol. 5, pp. 239–470. Hogrefe, Göttingen (1983)

    Google Scholar 

  • Moler, C., VanLoan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 1–46 (2003)

    Article  MathSciNet  Google Scholar 

  • Najfeld, I., Havel, T.: Derivatives of the matrix exponential and their computation. Adv. Appl. Math. 16, 321–375 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Nørgaard, M., Poulsen, N., Ravn, O.: New developments in state estimation for nonlinear systems. Automatica 36, 1627–1638 (2000)

    Article  Google Scholar 

  • Oud, J., Jansen, R.: Continuous time state space modeling of panel data by means of SEM. Psychometrika 65, 199–215 (2000)

    Article  MathSciNet  Google Scholar 

  • Oud, H., Singer, H.: Continuous time modeling of panel data: SEM vs. filter techniques. Stat. Neerl. 62(1), 4–28 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Oud, J., van Leeuwe, J., Jansen, R.: Kalman filtering in discrete and continuous time based on longitudinal LISREL models. In: Oud, J., van Blokland-Vogelesang, R. (eds) Advances in Longitudinal and Multivariate Analysis in the Behavioral Sciences, pp. 3–26. ITS, Nijmegen (1993)

    Google Scholar 

  • Ozaki, T., Jimenez, J., Haggan-Ozaki, V.: The role of the likelihood function in the estimation of chaos models. J. Time Ser. Anal. 21(4), 363–387 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Phillips, A.: The estimation of parameters in systems of stochastic differential equations. Biometrika 46, 67–76 (1959)

    MathSciNet  MATH  Google Scholar 

  • Phillips, P.: The estimation of linear stochastic differential equations with exogenous variables. In: Bergstrom, A. (ed.) Statistical Inference in Continuous Time Models, pp. 135–173. North Holland, Amsterdam (1976a)

    Google Scholar 

  • Phillips, P.: The problem of identification in finite parameter continuous time models. In: Bergstrom, A. (ed.) Statistical Inference in Continuous Time Models, pp. 123–134. North Holland, Amsterdam (1976b)

    Google Scholar 

  • Pokern, Y., Stuart, A.M., Wiberg, P.: Parameter estimation for partially observed hypoelliptic diffusions. J. R. Stat. Soc., Ser. B, Stat. Methodol. 71(1), 49–73 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations. Springer, Berlin (2007)

    MATH  Google Scholar 

  • Risken, H.: The Fokker–Planck Equation, 2nd edn. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  • Särkkä, S.: On unscented Kalman filtering for state estimation of continuous-time nonlinear systems. IEEE Trans. Autom. Control 52(9), 1631–1641 (2007)

    Article  Google Scholar 

  • Schiesser, W.E.: The Numerical Method of Lines. Academic Press, San Diego (1991)

    MATH  Google Scholar 

  • Schweppe, F.: Evaluation of likelihood functions for gaussian signals. IEEE Trans. Inf. Theory 11, 61–70 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  • Sethi, S., Lehoczky, J.: A comparison of the Ito and Stratonovich formulations of problems in finance. J. Econ. Dyn. Control 3, 343–356 (1981)

    Article  MathSciNet  Google Scholar 

  • Shoji, I., Ozaki, T.: Comparative study of estimation methods for continuous time stochastic processes. J. Time Ser. Anal. 18(5), 485–506 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Shoji, I., Ozaki, T.: A statistical method of estimation and simulation for systems of stochastic differential equations. Biometrika 85(1), 240–243 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Simandl, M., Dunik, J.: Design of derivative-free smoothers and predictors. In: Preprints of the 14th IFAC Symposium on System Identification, SYSID06, Newcastle, Australia (2006)

    Google Scholar 

  • Simon, H.: A formal theory of interaction in social groups. Am. Sociol. Rev. 17, 202–211 (1952)

    Article  Google Scholar 

  • Singer, H.: Parameterschätzung in zeitkontinuierlichen dynamischen Systemen [Parameter estimation in continuous time dynamical systems; Ph.D. thesis, University of Konstanz, in German]. Hartung-Gorre-Verlag, Konstanz (1990)

  • Singer, H.: LSDE—a program package for the simulation, graphical display, optimal filtering and maximum likelihood estimation of Linear Stochastic Differential Equations. User‘s guide, Meersburg (1991)

  • Singer, H.: Continuous-time dynamical systems with sampled data, errors of measurement and unobserved components. J. Time Ser. Anal. 14(5), 527–545 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Singer, H.: Analytical score function for irregularly sampled continuous time stochastic processes with control variables and missing values. Econom. Theory 11, 721–735 (1995)

    Article  Google Scholar 

  • Singer, H.: Continuous panel models with time dependent parameters. J. Math. Sociol. 23, 77–98 (1998)

    Article  MATH  Google Scholar 

  • Singer, H.: Parameter estimation of nonlinear stochastic differential equations: simulated maximum likelihood vs. extended Kalman filter and Itô–Taylor expansion. J. Comput. Graph. Stat. 11(4), 972–995 (2002)

    Google Scholar 

  • Singer, H.: Generalized Gauss–Hermite filtering for multivariate diffusion processes. Diskussionsbeiträge Fachbereich Wirtschaftswissenschaft 402, FernUniversität in Hagen (2006a). http://www.fernuni-hagen.de/FBWIWI/forschung/beitraege/pdf/db402.pdf

  • Singer, H.: Moment equations and Hermite expansion for nonlinear stochastic differential equations with application to stock price models. Comput. Stat. 21(3), 385–397 (2006b)

    Article  MATH  Google Scholar 

  • Singer, H.: Stochastic differential equation models with sampled data. In: van Montfort, K., Oud, H., Satorra, A. (eds) Longitudinal Models in the Behavioral and Related Sciences. The European Association of Methodology (EAM) Methodology and Statistics Series, vol. II, pp. 73–106. Lawrence Erlbaum Associates, Mahwah (2007)

    Google Scholar 

  • Singer, H.: Generalized Gauss–Hermite filtering. AStA Adv. Stat. Anal. 92(2), 179–195 (2008a)

    Article  MathSciNet  Google Scholar 

  • Singer, H.: Nonlinear continuous time modeling approaches in panel research. Stat. Neerl. 62(1), 29–57 (2008b)

    MATH  Google Scholar 

  • Singer, H.: SEM modeling with singular moment matrices. Part I: ML-estimation of time series. J. Math. Sociol. 34(4), 301–320 (2010)

    Article  MATH  Google Scholar 

  • Singer, H.: SEM modeling with singular moment matrices. Part II: ML-estimation of sampled stochastic differential equations. J. Math. Sociol. (2011, forthcoming)

  • Singer, B., Spilerman, S.: Representation of social processes by Markov models. Am. J. Sociol. 82, 1–53 (1976)

    Article  Google Scholar 

  • Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, Berlin (1991)

    MATH  Google Scholar 

  • Stratonovich, R.: On the probability functional of diffusion processes. Sel. Transl. Math. Stat. Probab. 10, 273–286 (1971)

    Google Scholar 

  • Stratonovich, R.: Some Markov methods in the theory of stochastic processes in nonlinear dynamic systems. In: Moss, F., McClintock, P. (eds) Noise in Nonlinear Dynamic Systems, pp. 16–71. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  • Tsai, H., Chan, K.: A note on parameter differentiation of matrix exponentials, with applications to continuous-time modelling. Bernoulli 9(5), 895–919 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Valdes-Sosa, P.A., Sanchez-Bornot, J.M., Sotero, R.C., Iturria-Medina, Y., Aleman-Gomez, Y., Bosch-Bayard, J., Carbonell, F., Ozaki, T.: Model driven EEG/fMRI fusion of brain oscillations. Hum. Brain Mapp. 30, 2701–2721 (2009)

    Article  Google Scholar 

  • Van Kampen, N.: Itô vs. Stratonovich. J. Stat. Phys. 24, 175–187 (1981)

    Article  MATH  Google Scholar 

  • Walsh, J.: An introduction to stochastic partial differential equations. In: Hennequin, P. (ed.) Lecture Notes in Mathematics, vol. 1180, pp. 265–437. Springer, Berlin (1984)

    Google Scholar 

  • Wei, G.W., Zhang, D.S., Kouric, D.J., Hoffman, D.K.: Distributed approximating functional approach to the Fokker–Planck equation: time propagation. J. Chem. Phys. 107(8), 3239–3246 (1997)

    Article  Google Scholar 

  • Wilcox, R.: Exponential operators and parameter differentiation in quantum physics. J. Math. Phys. 8, 962 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  • Yoo, H.: Semi-discretization of stochastic partial differential equations on ℝ1 by a finite-difference method. Math. Comput. 69(230), 653–666 (2000)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Singer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singer, H. Continuous-discrete state-space modeling of panel data with nonlinear filter algorithms. AStA Adv Stat Anal 95, 375–413 (2011). https://doi.org/10.1007/s10182-011-0172-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10182-011-0172-3

Keywords

Navigation