Skip to main content

Advertisement

Log in

Primal and dual active-set methods for convex quadratic programming

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Computational methods are proposed for solving a convex quadratic program (QP). Active-set methods are defined for a particular primal and dual formulation of a QP with general equality constraints and simple lower bounds on the variables. In the first part of the paper, two methods are proposed, one primal and one dual. These methods generate a sequence of iterates that are feasible with respect to the equality constraints associated with the optimality conditions of the primal–dual form. The primal method maintains feasibility of the primal inequalities while driving the infeasibilities of the dual inequalities to zero. The dual method maintains feasibility of the dual inequalities while moving to satisfy the primal inequalities. In each of these methods, the search directions satisfy a KKT system of equations formed from Hessian and constraint components associated with an appropriate column basis. The composition of the basis is specified by an active-set strategy that guarantees the nonsingularity of each set of KKT equations. Each of the proposed methods is a conventional active-set method in the sense that an initial primal- or dual-feasible point is required. In the second part of the paper, it is shown how the quadratic program may be solved as a coupled pair of primal and dual quadratic programs created from the original by simultaneously shifting the simple-bound constraints and adding a penalty term to the objective function. Any conventional column basis may be made optimal for such a primal–dual pair of shifted-penalized problems. The shifts are then updated using the solution of either the primal or the dual shifted problem. An obvious application of this approach is to solve a shifted dual QP to define an initial feasible point for the primal (or vice versa). The computational performance of each of the proposed methods is evaluated on a set of convex problems from the CUTEst test collection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Altman, A., Gondzio, J.: Regularized symmetric indefinite systems in interior point methods for linear and quadratic optimization. Optim. Methods Softw. 11/12(1–4), 275–302 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartlett, R.A., Biegler, L.T.: QPSchur: a dual, active-set, Schur-complement method for large-scale and structured convex quadratic programming. Optim. Eng. 7(1), 5–32 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beale, E.M.L.: An introduction to Beale’s method of quadratic programming. In: Abadie, J. (ed.) Nonlinear Programming, pp. 143–153. North Holland, Amsterdam (1967)

    Google Scholar 

  4. Beale, E.M.L., Benveniste, R.: Quadratic programming. In: Greenberg, H.J. (ed.) Design and Implementation of Optimization Software, pp. 249–258. Sijthoff and Noordhoff, The Netherlands (1978)

    Chapter  Google Scholar 

  5. Best, M.J.: An algorithm for the solution of the parametric quadratic programming problem. CORR 82-14, Department of Combinatorics and Optimization, University of Waterloo, Canada (1982)

  6. Best, M.J.: An algorithm for the solution of the parametric quadratic programming problem. In: Fischer, H., Riedmüller, B., Schäffler, S. (eds.) Applied Mathematics and Parallel Computing: Festschrift for Klaus Ritter, pp. 57–76. Physica, Heidelberg (1996)

    Chapter  Google Scholar 

  7. Bland, R.G.: New finite pivoting rules for the simplex method. Math. Oper. Res. 2(2), 103–107 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boland, N.L.: A dual-active-set algorithm for positive semi-definite quadratic programming. Math. Program. Ser. A 78(1), 1–27 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bongartz, I., Conn, A.R., Gould, N.I.M., Toint, PhL: CUTE: constrained and unconstrained testing environment. ACM Trans. Math. Softw. 21(1), 123–160 (1995)

    Article  MATH  Google Scholar 

  10. Bunch, J.R., Parlett, B.N.: Direct methods for solving symmetric indefinite systems of linear equations. SIAM J. Numer. Anal. 8, 639–655 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bunch, J.R., Kaufman, L.: Some stable methods for calculating inertia and solving symmetric linear systems. Math. Comput. 31, 163–179 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bunch, J.R., Kaufman, L.: A computational method for the indefinite quadratic programming problem. Linear Algebra Appl. 34, 341–370 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cartis, C.C., Gould, N.I.M.: Finding a point in the relative interior of a polyhedron. Report RAL-TR-2006-016, Rutherford Appleton Laboratory, Oxon, UK, December (2006)

  14. Charnes, A.: Optimality and degeneracy in linear programming. Econometrica 20(2), 160–170 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chiche, A., Gilbert, J.C.: How the augmented Lagrangian algorithm can deal with an infeasible convex quadratic optimization problem. J. Convex Anal. 22(4) (2016)

  16. Curtis, F.E., Han, Z., Robinson, D.P.: A globally convergent primal–dual active-set framework for large-scale convex quadratic optimization. Comput. Optim. Appl. (2014). doi:10.1007/s10589-014-9681-9:1-31

  17. Dantzig, G.B., Orden, A., Wolfe, P.: The generalized simplex method for minimizing a linear form under linear inequality constraints. Pac. J. Math. 5, 183–195 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  18. Delbos, F., Gilbert, J.C.: Global linear convergence of an augmented Lagrangian algorithm for solving convex quadratic optimization problems. J. Convex Anal. 12(1), 45–69 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. Ser. A 91(2), 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Duff, I.S.: MA57—a code for the solution of sparse symmetric definite and indefinite systems. ACM Trans. Math. Softw. 30(2), 118–144 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric linear equations. ACM Trans. Math. Softw. 9, 302–325 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ferreau, H.J., Bock, H.G., Diehl, M.: An online active set strategy to overcome the limitations of explicit MPC. Int. J. Robust Nonlinear Control 18(8), 816–830 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ferreau, H.J., Kirches, C., Potschka, A., Bock, H.G., Diehl, M.: qpOASES: a parametric active-set algorithm for quadratic programming. Math. Prog. Comp. 6(4), 327–363 (2014)

  24. Fletcher, R.: A general quadratic programming algorithm. J. Inst. Math. Appl. 7, 76–91 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fletcher, R.: Factorizing symmetric indefinite matrices. Linear Algebra Appl. 14, 257–272 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fletcher, R.: Resolving degeneracy in quadratic programming. Ann. Oper. Res. 46/47(2), 307–334 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fletcher, R.: Stable reduced Hessian updates for indefinite quadratic programming. Math. Program. Ser. B 87(2), 251–264 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Forsgren, A.: Inertia-controlling factorizations for optimization algorithms. Appl. Numer. Math. 43, 91–107 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Forsgren, A., Murray, W.: Newton methods for large-scale linear equality-constrained minimization. SIAM J. Matrix Anal. Appl. 14, 560–587 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gilbert, J.C., Joannopoulos, É.: OQLA/QPALM—convex quadratic optimization solvers using the augmented Lagrangian approach, with an appropriate behavior on infeasible or unbounded problems. Technical report, INRIA, BP 105, 78153 Le Chesnay, France (2015)

  31. Gill, P.E., Murray, W.: Numerically stable methods for quadratic programming. Math. Program. 14, 349–372 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gill, P.E., Robinson, D.P.: A globally convergent stabilized SQP method. SIAM J. Optim. 23(4), 1983–2010 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gill, P.E., Wong, E.: Methods for convex and general quadratic programming. Math. Program. Comput. 7(1), 71–112 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gill, P.E., Gould, N.I.M., Murray, W., Saunders, M.A., Wright, M.H.: A weighted Gram–Schmidt method for convex quadratic programming. Math. Program. 30, 176–195 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  35. Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H.: A practical anti-cycling procedure for linearly constrained optimization. Math. Program. 45, 437–474 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H.: A Schur-complement method for sparse quadratic programming. In: Cox, M.G., Hammarling, S.J. (eds.) Reliable Numerical Computation, pp. 113–138. Oxford University Press, Oxford (1990)

    Google Scholar 

  37. Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H.: Inertia-controlling methods for general quadratic programming. SIAM Rev. 33(1), 1–36 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gill, P.E., Murray, W., Saunders, M.A.: User’s guide for QPOPT 1.0: a Fortran package for quadratic programming. Report SOL 95-4, Department of Operations Research, Stanford University, Stanford, CA (1995)

  39. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev. 47, 99–131 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Gill, P.E., Murray, W., Saunders, M.A.: User’s guide for SQOPT Version 7: software for large-scale linear and quadratic programming. Numerical Analysis Report 06-1, Department of Mathematics, University of California, San Diego, La Jolla, CA (2006)

  41. Goldfarb, D., Idnani, A.: A numerically stable dual method for solving strictly convex quadratic programs. Math. Program. 27(1), 1–33 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  42. Gould, N.I.M.: An algorithm for large-scale quadratic programming. IMA J. Numer. Anal. 11(3), 299–324 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  43. Gould, N.I.M., Toint, P.L.: An iterative working-set method for large-scale nonconvex quadratic programming. Appl. Numer. Math. 43(1–2), 109–128 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  44. Gould, N.I.M., Toint, P.L.: Numerical methods for large-scale non-convex quadratic programming. In: Trends in industrial and applied mathematics (Amritsar, 2001), volume 72 of Appl. Optim., pp. 149–179. Kluwer, Dordrecht (2002)

  45. Gould, N.I.M., Orban, D., Toint, P.L.: CUTEr and sifdec: a constrained and unconstrained testing environment, revisited. ACM Trans. Math. Softw. 29(4), 373–394 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  46. Gould, N.I.M., Orban, D., Toint, P.L.: GALAHAD, a library of thread-safe Fortran 90 packages for large-scale nonlinear optimization. ACM Trans. Math. Softw. 29(4), 353–372 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  47. Gould, N.I.M., Orban, D., Toint, P.L.: CUTEst: a constrained and unconstrained testing environment with safe threads for mathematical optimization. Comput. Optim. Appl. 60(3), 545–557 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Hall, J.A.J., McKinnon, K.I.M.: The simplest examples where the simplex method cycles and conditions where EXPAND fails to prevent cycling. Technical Report MS 96-010, Department of Mathematics and Statistics, University of Edinburgh (1996)

  49. Harris, P.M.J.: Pivot selection methods of the Devex LP code. Math. Program. 5, 1–28 (1973). Reprinted in Math. Prog. Study, 4, 30–57 (1975)

  50. Hoyle, S.C.: A single-phase method for quadratic programming. PhD thesis, Report SOL 86-9, Department of Operations Research, Stanford University, Stanford, CA (1986)

  51. Huynh, H.M.: A large-scale quadratic programming solver based on block-LU updates of the KKT system. PhD thesis, Program in Scientific Computing and Computational Mathematics, Stanford University, Stanford, CA (2008)

  52. Maes, C.M.: A regularized active-set method for sparse convex quadratic programming. PhD thesis, Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, August (2010)

  53. Morales, J.L.: A numerical study of limited memory BFGS methods. Appl. Math. Lett. 15(4), 481–487 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  54. Potschka, A., Kirches, C., Bock, H., Schlöder, J.: Reliable solution of convex quadratic programs with parametric active set methods. Technical report, Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany, November (2010)

  55. Powell, M.J.D.: On the quadratic programming algorithm of Goldfarb and Idnani. Math. Program. Stud. 25, 46–61 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  56. Ritter, K.: A method for solving nonlinear maximum problems depending on parameters. Nav. Res. Logist. Q. 14, 147–162 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  57. Ritter, K.: On parametric linear and quadratic programming. MRC Technical report 2197, University of Wisconsin at Madison, Wisconsin, USA (1981)

  58. Stoer, J.: On the realization of the quadratic programming algorithm of Goldfarb and Idnani. In: Vistas in applied mathematics, Transl. Ser. Math. Engrg., pp. 167–180. Optimization Software, New York (1986)

  59. Wong, E.: Active-set methods for quadratic programming. PhD thesis, Department of Mathematics, University of California San Diego, La Jolla, CA (2011)

  60. Wright, S.J.: Superlinear convergence of a stabilized SQP method to a degenerate solution. Comput. Optim. Appl. 11(3), 253–275 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank two referees for constructive comments that significantly improved the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Wong.

Additional information

A. Forsgren—Research supported by the Swedish Research Council (VR).

P. E. Gill, E. Wong—Research supported in part by Northrop Grumman Aerospace Systems, and National Science Foundation Grants DMS-1318480 and DMS-1361421.

Appendix

Appendix

The appendix concerns some basic results used in previous sections. The first result shows that the nonsingularity of a KKT matrix may be established by checking that the two row blocks \(\big (H \ \ A^T \big )\) and \(\big (A \ \ -M \big )\) have full row rank.

Proposition 5

Assume that H and M are symmetric, positive semidefinite matrices. The vectors u and v satisfy

$$\begin{aligned} \begin{pmatrix} H &{}\quad A^T \\ A &{}\quad -M \end{pmatrix} \begin{pmatrix}-u \\ - v \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{aligned}$$
(25)

if and only if

$$\begin{aligned} \begin{pmatrix} H \\ A \end{pmatrix} u = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \;\;\text {and}\;\; \begin{pmatrix} A^T \\ -M \end{pmatrix} v = \begin{pmatrix} 0 \\ 0 \end{pmatrix}. \end{aligned}$$
(26)

Proof

If (26) holds, then (25) holds, which establishes the “if” direction. Now assume that u and v are vectors such that (25) holds. Then,

$$\begin{aligned} u^T\!H u - u^T\!A^T\!v = 0, \quad \text {and}\quad v^T\!A u + v^T\!M v = 0. \end{aligned}$$

Adding these equations gives the identity \(u^T\!H u + v^T\!M v = 0\). But then, the symmetry and semidefiniteness of H and M imply \(u^T\!H u=0\) and \(v^T\!M v = 0\). This can hold only if \(H u = 0\) and \(M v=0\). If \(Hu=0\) and \(M v=0\), (25) gives \(A^T\!v=0\) and \(Au=0\), which implies that (26) holds, which completes the proof. \(\square \)

The next result shows that when checking a subset of the columns of a symmetric positive semidefinite matrix for linear dependence, it is only the diagonal block that is of importance. The off-diagonal block may be ignored.

Proposition 6

Let H be a symmetric, positive semidefinite matrix partitioned as

$$\begin{aligned} H = \begin{pmatrix} H_{11} &{}\quad H_{12} \\ H_{12}^T &{}\quad H_{22}^{}\end{pmatrix}. \end{aligned}$$

Then,

$$\begin{aligned} \begin{pmatrix} H_{11} \\ H_{12}^T \end{pmatrix} u = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \;\;\text {if and only if}\;\; H_{11} u = 0. \end{aligned}$$

Proof

If H is positive semidefinite, then \(H_{11}\) is positive semidefinite, and it holds that

$$\begin{aligned} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} H_{11} \\ H_{12}^T \end{pmatrix} u = \begin{pmatrix} H_{11} &{}\quad H_{12} \\ H_{12}^T &{}\quad H_{22}^{}\end{pmatrix} \begin{pmatrix} u \\ 0 \end{pmatrix} \end{aligned}$$

if and only if

$$\begin{aligned} 0 = \begin{pmatrix} u^T&\quad 0 \end{pmatrix} \begin{pmatrix} H_{11} &{}\quad H_{12} \\ H_{12}^T &{}\quad H_{22}^{}\end{pmatrix} \begin{pmatrix} u \\ 0 \end{pmatrix} = u^T\!H_{11} u \end{aligned}$$

if and only if \(H_{11} u = 0\), as required. \(\square \)

In the following propositions, the distinct integers k and l, together with integers from the index sets \(\mathcal {B}\) and \(\mathcal {N}\) define a partition of \(\mathcal {I}= \{1\), 2, ..., \(n\}\), i.e., \(\mathcal {I}= \mathcal {B}\cup \{k\} \cup \{l\} \cup \mathcal {N}\). If w is any n-vector, the \(n_{ B}\)-vector \(w_{ B}\) and \(w_{ N}\)-vector \(w_{ N}\) denote the vectors of components of w associated with \(\mathcal {B}\) and \(\mathcal {N}\). For the symmetric Hessian H, the matrices \(H_{ BB }\) and \(H_{ NN }\) denote the subset of rows and columns of H associated with the sets \(\mathcal {B}\) and \(\mathcal {N}\) respectively. The unsymmetric matrix of components \(h_{ij}\) with \(i\in \mathcal {B}\) and \(j\in \mathcal {N}\) will be denoted by \(H_{ BN }\). Similarly, \(A_{ B}\) and \(A_{ N}\) denote the matrices of columns associated with \(\mathcal {B}\) and \(\mathcal {N}\).

The next result concerns the row rank of the \(\big (A \ \ -M \big )\) block of the KKT matrix.

Proposition 7

If the matrix \(\big ( a_l \ \ a_k \ \ A_{ B} \ \ -M \big )\) has full row rank, and there exist \(\Delta x_l\), \(\Delta x_k\), \(\Delta x_{ B}\), and \(\Delta y\) such that \(a_l \Delta x_l + a_k \Delta x_k + A_{ B}\Delta x_{ B}+ M \Delta y=0\) with \(\Delta x_k\ne 0\), then \(\big ( a_l \ \ A_{ B} \ \ -M \big )\) has full row rank.

Proof

It must be established that \(u^T\!\begin{pmatrix} a_l&A_{ B}&-M \end{pmatrix}=0\) implies that \(u=0\). For a given u, let \(\gamma = -u^T\!a_k\), so that

$$\begin{aligned} \begin{pmatrix} u^T&\quad \gamma \end{pmatrix} \begin{pmatrix} a_l &{}\quad a_k &{}\quad A_{ B}&{}\quad -M \\ &{}\quad 1 \end{pmatrix} = \begin{pmatrix} 0&\quad 0&\quad 0&\quad 0 \end{pmatrix}.\end{aligned}$$

Then,

$$\begin{aligned} 0 = \begin{pmatrix} u^T&\quad \gamma \end{pmatrix} \begin{pmatrix} a_l &{}\quad a_k &{}\quad A_{ B}&{}\quad -M \\ &{}\quad 1 \end{pmatrix}\begin{pmatrix} -\Delta x_l \\ -\Delta x_k \\ -\Delta x_{ B}\\ - \Delta y\end{pmatrix} = \gamma \,\Delta x_k. \end{aligned}$$

As \(\Delta x_k\ne 0\), it must hold that \(\gamma = 0\), in which case

$$\begin{aligned} u^T \bigl (\; a_l \;\; a_k \;\; A_{ B} \;\; -M \;\bigr ) = 0. \end{aligned}$$

As \(\big ( a_l \ \ a_k \ \ A_{ B} \ \ -M \big )\) has full row rank by assumption, it follows that \(u=0\) and \(\big ( a_l \ \ A_{ B} \ \ -M \big )\) must have full row rank. \(\square \)

An analogous result holds concerning the \(\big (H \ \ A^T \big )\) block of the KKT matrix.

Proposition 8

If \(\big (H_{ BB }^{} \ \ A_{ B}^T \big )\) has full row rank, and there exist quantities \(\Delta x_{ N}\), \(\Delta x_{ B}\), \(\Delta y\), and \(\Delta z_k\) such that

$$\begin{aligned} \begin{pmatrix} h_{{ Nk }}^T &{}\quad h_{{ Bk }}^T &{}\quad a_k^T &{}\quad 1 \\ h_{ BN }^{}&{}\quad H_{ BB }^{}&{}\quad A_{ B}^T \end{pmatrix} \begin{pmatrix} -\Delta x_{ N}\\ -\Delta x_{ B}\\ -\Delta y\\ -\Delta z_k \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \end{aligned}$$
(27)

with \(\Delta z_k \ne 0\), then the matrix

$$\begin{aligned} \begin{pmatrix} h_{kk}^{}&{}\quad h_{{ Bk }}^T &{}\quad a_k^T \\ h_{{ Bk }}^{}&{}\quad H_{ BB }^{}&{}\quad A_{ B}^T \end{pmatrix} \end{aligned}$$

has full row rank.

Proof

Let \(\big (\mu \ \ v^T \big )\) be any vector such that

$$\begin{aligned} \bigl (\, \mu \;\; v^T \,\bigr ) \begin{pmatrix} h_{{ Nk }}^T &{}\quad h_{{ Bk }}^T &{}\quad a_k^T \\ h_{ BN }^{}&{}\quad H_{ BB }^{}&{}\quad A_{ B}^T \end{pmatrix} = \begin{pmatrix}0&\quad 0&\quad 0 \end{pmatrix}. \end{aligned}$$

The assumed identity (27) gives

$$\begin{aligned} 0 = \bigl (\, \mu \;\; v^T \,\bigr ) \begin{pmatrix} h_{{ Nk }}^T &{}\quad h_{{ Bk }}^T &{}\quad a_k^T \\ h_{ BN }^{}&{}\quad H_{ BB }^{}&{}\quad A_{ B}^T \end{pmatrix} \begin{pmatrix} -\Delta x_{ N}\\ -\Delta x_{ B}\\ -\Delta y\end{pmatrix} = \mu \,\Delta z_k. \end{aligned}$$

As \(\Delta z_k\ne 0\) by assumption, it must hold that \(\mu =0\). The full row rank of \(\big (H_{ BB }^{} \ \ A_{ B}^T \big )\) then gives \(v = 0\) and

$$\begin{aligned} \begin{pmatrix} h_{{ Nk }}^T &{}\quad h_{{ Bk }}^T &{}\quad a_k^T \\ h_{ BN }^{}&{}\quad H_{ BB }^{}&{}\quad A_{ B}^T \end{pmatrix} \end{aligned}$$

must have full row rank. Proposition 5 implies that this is equivalent to

$$\begin{aligned} \begin{pmatrix} h_{kk}^{}&{}\quad h_{{ Bk }}^T &{}\quad a_k^T \\ h_{{ Bk }}^{}&{}\quad H_{ BB }^{}&{}\quad A_{ B}^T \end{pmatrix} \end{aligned}$$

having full row rank. \(\square \)

The next proposition concerns the primal subiterations when the constraint index k is moved from \(\mathcal {B}\) to \(\mathcal {N}\). In particular, it is shown that the \(K_l\) matrix is nonsingular after a subiteration.

Proposition 9

Assume that (\(\Delta x_l\), \(\Delta x_k\), \(\Delta x_{ B}\), \(-\Delta y\), \(-\Delta z_l\)) is the unique solution of the equations

$$\begin{aligned} \begin{pmatrix} h_{ll}^{}&{}\quad h_{kl}^{}&{}\quad h_{{ Bl }}^T &{}\quad a_l^T &{}\quad -1 \\ h_{kl}^{}&{}\quad h_{kk}^{}&{}\quad h_{{ Bk }}^T &{}\quad a_k^T &{}\quad \\ h_{{ Bl }}^{}&{}\quad h_{{ Bk }}^{}&{}\quad H_{ BB }^{}&{}\quad A_{ B}^T &{}\quad \\ a_l &{}\quad a_k &{}\quad A_{ B}&{}\quad -M &{}\quad \\ 1 &{}\quad &{}\quad &{}\quad &{}\quad -1 \end{pmatrix} \begin{pmatrix} -\Delta x_l \\ -\Delta x_k \\ -\Delta x_{ B}\\ -\Delta y\\ -\Delta z_l \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \end{aligned}$$
(28)

and that \(\Delta x_k\ne 0\). Then, the matrices \(K_l\) and \(K_k\) are nonsingular, where

$$\begin{aligned} K_l = \begin{pmatrix} h_{ll}^{}&{}\quad h_{{ Bl }}^T &{}\quad a_l^T \\ h_{{ Bl }}^{}&{}\quad H_{ BB }^{}&{}\quad A_{ B}^T \\ a_l &{}\quad A_{ B}&{}\quad -M \end{pmatrix} \quad \text {and}\quad K_k = \begin{pmatrix} h_{kk}^{}&{}\quad h_{{ Bk }}^T &{}\quad a_k^T \\ h_{{ Bk }}^{}&{}\quad H_{ BB }^{}&{}\quad A_{ B}^T \\ a_k &{}\quad A_{ B}&{}\quad -M \end{pmatrix}. \end{aligned}$$

Proof

By assumption, the Eq. (28) have a unique solution with \(\Delta x_k\ne 0\). This implies that there is no solution of the overdetermined equations

$$\begin{aligned} \begin{pmatrix} h_{ll}^{}&{}\quad h_{kl}^{}&{}\quad h_{{ Bl }}^T &{}\quad a_l^T &{}\quad -1 \\ h_{kl}^{}&{}\quad h_{kk}^{}&{}\quad h_{{ Bk }}^T &{}\quad a_k^T &{}\quad \\ h_{{ Bl }}^{}&{}\quad h_{{ Bk }}^{}&{}\quad H_{ BB }^{}&{}\quad A_{ B}^T &{}\quad \\ a_l &{}\quad a_k &{}\quad A_{ B}&{}\quad -M &{}\quad \\ 1 &{}\quad &{}\quad &{}\quad &{}\quad -1 \\ &{}\quad 1 &{}\quad &{}\quad &{}\quad \end{pmatrix} \begin{pmatrix}-\Delta x_l \\ -\Delta x_k \\ -\Delta x_{ B}\\ - \Delta y\\ - \Delta z_l \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}. \end{aligned}$$
(29)

Given an arbitrary matrix D and nonzero vector f, the fundamental theorem of linear algebra implies that if \(D w = f\) has no solution, then there exists a vector v such that \(v^T\!f \ne 0\). The application of this result to (29) implies the existence of a nontrivial vector (\(\Delta \widetilde{x}_l\), \(\Delta \widetilde{x}_k\), \(\Delta \widetilde{x}_{ B}\), \(-\Delta \widetilde{y}\), \(-\Delta \widetilde{z}_l\), \(-\Delta \widetilde{z}_k\)) such that

(30)

with \(\Delta \widetilde{z}_l\ne 0\). The last equation of (30) gives \(\Delta \widetilde{x}_l + \Delta \widetilde{z}_l=0\), in which case \(\Delta \widetilde{x}_l \Delta \widetilde{z}_l = -\Delta \widetilde{z}_l^2 <0\) because \(\Delta \widetilde{z}_l\ne 0\). Any solution of (30) may be viewed as a solution of the equations \(H \Delta \widetilde{x}- A^T\!\Delta \widetilde{y}- \Delta \widetilde{z}= 0\), \(A \Delta \widetilde{x}+ M \Delta \widetilde{y}= 0\), \(\Delta \widetilde{z}_{ B}=0\), and \(\Delta \widetilde{x}_i = 0\) for \(i\in \{ 1\), 2, ..., \(n\} {\setminus } \{ l \} {\setminus } \{ k \}\). An argument similar to that used to establish Proposition 2 gives

$$\begin{aligned} \Delta \widetilde{x}_l \Delta \widetilde{z}_l + \Delta \widetilde{x}_k \Delta \widetilde{z}_k \ge 0, \end{aligned}$$

which implies that \(\Delta \widetilde{x}_k \Delta \widetilde{z}_k > 0\), with \(\Delta \widetilde{x}_k\ne 0\) and \(\Delta \widetilde{z}_k\ne 0\).

As the search direction is unique, it follows from (28) that \(\big ( h_{{ Bl }}^{} \ \ H_{{ Bk }}^{} \ \ H_{ BB }^{} \ \ A_{ B}^T \big )\) has full row rank, and Proposition 6 implies that \(\big (H_{ BB }^{} \ \ A_{ B}^T \big )\) has full row rank. Hence, as \(\Delta \widetilde{z}_l\ne 0\), it follows from (30) and Proposition 8 that the matrix

$$\begin{aligned} \begin{pmatrix} h_{ll}^{}&{}\quad h_{kl}^{}&{}\quad h_{{ Bl }}^T &{}\quad a_l^T \\ h_{{ Bl }}^{}&{}\quad h_{{ Bk }}^{}&{}\quad H_{ BB }^{}&{}\quad A_{ B}^T \end{pmatrix} \end{aligned}$$

has full row rank, which is equivalent to the matrix

$$\begin{aligned} \begin{pmatrix} h_{ll}^{}&{}\quad h_{{ Bl }}^T &{}\quad a_l^T \\ h_{{ Bl }}^{}&{}\quad H_{ BB }^{}&{}\quad A_{ B}^T \end{pmatrix} \end{aligned}$$

having full row rank by Proposition 6,

Again, the search direction is unique and (28) implies that \(\big ( a_l \ \ a_k \ \ A_{ B} \ \ -M \big )\) has full row rank. As \(\Delta \widetilde{x}_k\ne 0\), Proposition 7 implies that \(\big ( a_l \ \ A_{ B} \ \ -M \big )\) must have full row rank. Consequently, Proposition 5 implies that \(K_l\) is nonsingular.

As \(\Delta \widetilde{x}_k\), \(\Delta \widetilde{x}_l\), \(\Delta \widetilde{z}_k\) and \(\Delta \widetilde{z}_l\) are all nonzero, the roles of k and l may be reversed to give the result that \(K_k\) is nonsingular. \(\square \)

The next proposition concerns the situation when a constraint index k is moved from \(\mathcal {N}\) to \(\mathcal {B}\) in a dual subiteration. In particular, it is shown that the resulting matrix \(K_{ B}\) defined after a subiteration is nonsingular.

Proposition 10

Assume that there is a unique solution of the equations

$$\begin{aligned} \begin{pmatrix} h_{ll}^{}&{}\quad h_{kl}^{}&{}\quad h_{{ Bl }}^T &{}\quad a_l^T &{}\quad -1 \\ h_{kl}^{}&{}\quad h_{kk}^{}&{}\quad h_{{ Bk }}^T &{}\quad a_k^T &{}\quad &{}\quad -1 \\ h_{{ Bl }}^{}&{}\quad h_{{ Bk }}^{}&{}\quad H_{ BB }^{}&{}\quad A_{ B}^T &{}\quad \\ a_l &{}\quad a_k &{}\quad A_{ B}&{}\quad -M &{}\quad \\ 1 &{}\quad &{}\quad &{}\quad &{}\quad -1 \\ &{}\quad 1 \end{pmatrix} \begin{pmatrix} -\Delta x_l \\ -\Delta x_k \\ -\Delta x_{ B}\\ -\Delta y\\ -\Delta z_l \\ -\Delta z_k \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \end{aligned}$$
(31)

with \(\Delta z_k\ne 0\). Then, the matrices \(K_l\) and \(K_k\) are nonsingular, where

$$\begin{aligned} K_l = \begin{pmatrix} h_{ll}^{}&{}\quad h_{{ Bl }}^T &{}\quad a_l^T \\ h_{{ Bl }}^{}&{}\quad H_{ BB }^{}&{}\quad A_{ B}^T \\ a_l &{}\quad A_{ B}&{}\quad -M \end{pmatrix}, \quad \text {and}\quad K_k = \begin{pmatrix} h_{kk}^{}&{}\quad h_{{ Bk }}^T &{}\quad a_k^T \\ h_{{ Bk }}^{}&{}\quad H_{ BB }^{}&{}\quad A_{ B}^T \\ a_k &{}\quad A_{ B}&{}\quad -M \end{pmatrix}. \end{aligned}$$

Proof

As (31) has a unique solution with \(\Delta z_k\ne 0\), there is no solution of

$$\begin{aligned} \begin{pmatrix} h_{ll}^{}&{}\quad h_{kl}^{}&{}\quad h_{{ Bl }}^T &{}\quad a_l^T &{}\quad -1 \\ h_{kl}^{}&{}\quad h_{kk}^{}&{}\quad h_{{ Bk }}^T &{}\quad a_k^T &{}\quad \\ h_{{ Bl }}^{}&{}\quad h_{{ Bk }}^{}&{}\quad H_{ BB }^{}&{}\quad A_{ B}^T &{}\quad \\ a_l &{}\quad a_k &{}\quad A_{ B}&{}\quad -M &{}\quad \\ 1 &{}\quad &{}\quad &{}\quad &{}\quad -1 \\ &{}\quad 1 \end{pmatrix} \begin{pmatrix} -\Delta x_l \\ -\Delta x_k \\ -\Delta x_{ B}\\ -\Delta y\\ -\Delta z_l \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}. \end{aligned}$$
(32)

The fundamental theorem of linear algebra applied to (32) implies the existence of a solution of

(33)

with \(\Delta \widetilde{z}_l\ne 0\). It follows from (33) that \(\Delta \widetilde{x}_l+\Delta \widetilde{z}_l=0\). As \(\Delta \widetilde{z}_l\ne 0\), this implies \(\Delta \widetilde{x}_l \Delta \widetilde{z}_l<0\). The solution of (33) may be regarded as a solution of the homogeneous equations \(H \Delta x- A^T\!\Delta y- \Delta z= 0\), \(A \Delta x+ M \Delta y= 0\), with \(\Delta z_i = 0\), for \(i\in \mathcal {B}\), and \(\Delta x_i = 0\), for \(i\in \{1,\dots ,n\}{\setminus }\{k\}{\setminus }\{l\}\). Hence, Proposition 2 gives

$$\begin{aligned} \Delta \widetilde{x}_l \Delta \widetilde{z}_l + \Delta \widetilde{x}_k \Delta \widetilde{z}_k \ge 0, \end{aligned}$$

so that \(\Delta \widetilde{x}_k \Delta \widetilde{z}_k > 0\). Hence, it must hold that \(\Delta \widetilde{x}_k\ne 0\) and \(\Delta \widetilde{z}_k\ne 0\).

As \(\Delta \widetilde{x}_k\ne 0\), \(\Delta \widetilde{x}_l\ne 0\), \(\Delta \widetilde{z}_k\ne 0\) and \(\Delta \widetilde{z}_l\ne 0\), the remainder of the proof is analogous to that of Proposition 9. \(\square \)

The next result gives expressions for the primal and dual objective functions in terms of the computed search directions.

Proposition 11

Assume that (xyz) satisfies the primal and dual equality constraints

$$\begin{aligned} H x + c - A^T\!y - z = 0, \quad \text {and}\quad Ax + M y - b = 0. \end{aligned}$$

Consider the partition \(\{1\), 2, ..., \(n\}= \mathcal {B}\cup \{l\}\cup \mathcal {N}\) such that \(x_{ N}+q_{ N}=0\) and \(z_{ B}+r_{ B}=0\). If the components of the direction (\(\Delta x\), \(\Delta y\), \(\Delta z\)) satisfy (9), then the primal and dual objective functions for (\(\hbox {PQP}_{q,r}\)) and (\(\hbox {DQP}_{q,r}\)), i.e.,

$$\begin{aligned} f_{ P}(x,y)&= -{\textstyle \frac{1}{2}}x^T\!H x + {\textstyle \frac{1}{2}}y^T\!M y + c^T\!x + r^T\!x \\ f_{ D}(x,y,z)&= - {\textstyle \frac{1}{2}}x^T\!H x - {\textstyle \frac{1}{2}}y^T\!M y + b^T\!y - q^T\!z, \end{aligned}$$

satisfy the identities

$$\begin{aligned} f_{ P}(x+\alpha \Delta x,y+\alpha \Delta y)&= f_{ P}(x,y)+ \Delta x_l(z_l+r_l) \alpha + {\textstyle \frac{1}{2}}\Delta x_l \Delta z_l \alpha ^2, \\ f_{ D}(x+\alpha \Delta x,y+\alpha \Delta y,z+\alpha \Delta z)&= f_{ D}(x,y,z) - \Delta z_l(x_l+q_l) \alpha - {\textstyle \frac{1}{2}}\Delta x_l \Delta z_l \alpha ^2. \end{aligned}$$

Proof

The directional derivative of the primal objective function is given by

$$\begin{aligned} \begin{pmatrix} \Delta x^T&\Delta y^T \end{pmatrix} \nabla \!f_{ P}(x,y)&= \begin{pmatrix} \Delta x^T&\Delta y^T \end{pmatrix} \begin{pmatrix} Hx + c + r \\ M y \end{pmatrix} \nonumber \\&= \begin{pmatrix} \Delta x^T&\Delta y^T \end{pmatrix} \begin{pmatrix} A^T\!y + z + r \\ M y \end{pmatrix} \end{aligned}$$
(34a)
$$\begin{aligned}&= (A\Delta x+ M\Delta y)^T\!y + \Delta x^T\!( z + r) = \Delta x_l ( z_l + r_l ), \end{aligned}$$
(34b)

where the identity \(Hx+c = A^T\!y +z\) has been used in (34a) and the identities \(A\Delta x+ M\Delta y=0\), \(\Delta x_N=0\) and \(z_{ B}+r_{ B}=0\) have been used in (34b).

The curvature in the direction (\(\Delta x,\Delta y\)) is given by

$$\begin{aligned} \begin{pmatrix} \Delta x^T&\Delta y^T \end{pmatrix} \nabla ^2\!f_{ P}(x,y) \begin{pmatrix} \Delta x\\ \Delta y\end{pmatrix} = \begin{pmatrix} \Delta x^T&\Delta y^T \end{pmatrix} \begin{pmatrix} H &{} \\ &{} M \end{pmatrix} \begin{pmatrix} \Delta x\\ \Delta y\end{pmatrix} = \Delta x_l \Delta z_l, \end{aligned}$$
(35)

where the last step follows from Proposition 2.

The directional derivative of the dual objective function is given by

$$\begin{aligned} \begin{pmatrix} \Delta x^T&\Delta y^T&\Delta z^T \end{pmatrix} \nabla \!f_{ D}(x,y,z)&= \begin{pmatrix} \Delta x^T&\Delta y^T&\Delta z^T \end{pmatrix} \begin{pmatrix} -Hx \\ -My + b \\ -q \end{pmatrix} \end{aligned}$$
(36a)
$$\begin{aligned}&= - \Delta x^T\!H x + \Delta y^T\!(-My + b) - \Delta z^T q \end{aligned}$$
(36b)
$$\begin{aligned}&= - (A^T\!\Delta y+ \Delta z)^T\!x + \Delta y^T\!(-My + b) - \Delta z^T q \end{aligned}$$
(36c)
$$\begin{aligned}&= -\Delta y^T\!(Ax + My - b)- \Delta z^T\!(x+q) \end{aligned}$$
(36d)
$$\begin{aligned}&= - \Delta z_l (x_l+q_l), \end{aligned}$$
(36e)

where the identity \(H \Delta x-A^T\!\Delta y-\Delta z=0\) has been used in (36c) and the identities \(Ax + My - b = 0\), \(x_{ N}+q_{ N}=0\) and \(\Delta z_{ B}=0\) have been used in (36e).

As z only appears linearly in the dual objective function, it follows from the structure of the Hessian matrices of \(f_{ P}(x,y)\) and \(f_{ D}(x,y,z)\) in combination with (35) that

$$\begin{aligned} \begin{pmatrix} \Delta x^T&\Delta y^T&\Delta z^T\end{pmatrix} \nabla ^2\!f_{ D}(x,y,z) \begin{pmatrix} \Delta x\\ \Delta y\\ \Delta z\end{pmatrix}= & {} -\begin{pmatrix} \Delta x^T&\Delta y^T\end{pmatrix}\nabla ^2\!f_{ P}(x,y)\begin{pmatrix} \Delta x\\ \Delta y\end{pmatrix}\\= & {} -\Delta x_l \Delta z_l. \end{aligned}$$

\(\square \)

The final result shows that there is no loss of generality in assuming that \(\big (A \ \ M \big )\) has full row rank in (\(\hbox {PQP}_{q,r}\)).

Proposition 12

There is no loss of generality in assuming that \(\big (A \ \ M \big )\) has full row rank in (\(\hbox {PQP}_{q,r}\)).

Proof

Let (x, y, z) be any vector satisfying (2a) and (2b). Assume that \(\big (A \ \ M \big )\) has linearly dependent rows, and that \(\big (A \ \ M \big )\) and b may be partitioned conformally such that

$$\begin{aligned} \bigl (\, A \;\;M \,\bigr ) = \begin{pmatrix}A_1 &{}\quad M_{11} &{}\quad M_{12} \\ A_2^{}&{}\quad M_{12}^T &{}\quad M_{22}^{}\end{pmatrix}, \quad \text {and}\quad b = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}, \end{aligned}$$

with \(\big ( A_{1} \ \ M_{11} \ \ M_{12} \big )\) having full row rank, and

$$\begin{aligned} \begin{pmatrix} A_2^{}&\quad M_{12}^T&\quad M_{22}^{}\end{pmatrix} = N \begin{pmatrix} A_1&\quad M_{11}&M_{12}\end{pmatrix}, \end{aligned}$$
(37)

with \(A_1\in \mathbb {R}^{m_1\times n}\) and \(A_2\in \mathbb {R}^{m_2\times n}\) for some matrix \(N\in \mathbb {R}^{m_2\times m_1}\). From the linear dependence of the rows of \(\big (A \ \ M \big )\), it follows that x, y and z satisfy (2a) and (2b) if and only if

$$\begin{aligned} Hx+c - A_1^T y_1^{}- A_2^T y_2^{}- z&= 0, \\ A_1 x + M_{11} y_1 + M_{12} y_2 - b_1&= 0 \quad \text {and}\quad b_2 = N b_1. \end{aligned}$$

It follows from (37) that \(M_{12} = M_{11} N^T\) and \(A_2^T=A_1^T N^T\), so that x, y and z satisfy (2a) and (2b) if and only if

$$\begin{aligned} Hx + c - A_1^T( y_1^{}+ N^T\!y_2^{}) - z&= 0, \\ A_1 x + M_{11}( y_1 + N^T\!y_2) - b_1&= 0 \;\;\text {and}\;\; b_2 = N b_1. \end{aligned}$$

We may now define \(\widetilde{y}_1=y_1+N^T\!y_2\) and replace (2b) and (2a) by the system

$$\begin{aligned} H x + c - A_1^T\widetilde{y}_1^{}- z&= 0, \\ A_1 x + M_{11}\widetilde{y}_1 - b_1&= 0. \end{aligned}$$

By assumption, \(\big ( A_{1} \ \ M_{11} \ \ M_{12} \big )\) has full row rank. Proposition 6 implies that \(\big (A_{1} \ \ M_{11} \big )\) has full row rank. This gives an equivalent problem for which \(\big (A_{1} \ \ M_{11} \big )\) has full row rank. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forsgren, A., Gill, P.E. & Wong, E. Primal and dual active-set methods for convex quadratic programming. Math. Program. 159, 469–508 (2016). https://doi.org/10.1007/s10107-015-0966-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-015-0966-2

Keywords

Mathematics Subject Classification

Navigation