Skip to main content
Log in

ACCPM with a nonlinear constraint and an active set strategy to solve nonlinear multicommodity flow problems

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

An Erratum to this article was published on 30 October 2007

Abstract

This paper proposes an implementation of a constrained analytic center cutting plane method to solve nonlinear multicommodity flow problems. The new approach exploits the property that the objective of the Lagrangian dual problem has a smooth component with second order derivatives readily available in closed form. The cutting planes issued from the nonsmooth component and the epigraph set of the smooth component form a localization set that is endowed with a self-concordant augmented barrier. Our implementation uses an approximate analytic center associated with that barrier to query the oracle of the nonsmooth component. The paper also proposes an approximation scheme for the original objective. An active set strategy can be applied to the transformed problem: it reduces the dimension of the dual space and accelerates computations. The new approach solves huge instances with high accuracy. The method is compared to alternative approaches proposed in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babonneau F., du Merle O., Vial J.-P. (2006). Solving large scale linear multicommodity flow problems with an active set strategy and Proximal-ACCPM. Oper. Res. 54(1): 184–197

    Article  MathSciNet  Google Scholar 

  2. Bar-Gera H. (2002). Origin-based algorithm for traffic assignment problem. Transp. Sci. 36(4): 398–417

    Article  MATH  Google Scholar 

  3. Bertsekas D.P., Gafni E.M. (1983). Projected newton methods and optimization of multicommodity flows. IEEE Trans. Autom. Control 28: 1090–1096

    Article  MATH  MathSciNet  Google Scholar 

  4. Bertsekas D.P., Gallager R.G. (1987). Data Networks. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  5. Castro, J., Montero, L., Rosas, D.: Using ACCPM in a simplicial decomposition algorithm for the traffic assignment problem. Technical report, Statistics and Operations Research Department, Universitat Politecnica de Catalunya (2002)

  6. Daneva, M., Lindberg, P.O.: The stiff is moving—conjugate direction Franck–Wolfe methods with applications to traffic assignment. Technical report, Linkoping University, Department of Mathematics (2004)

  7. Dijkstra E.W. (1959). A note on two problems in connexion with graphs. Numer. Math. 1: 269–271

    Article  MATH  MathSciNet  Google Scholar 

  8. Frangioni A., Gallo G. (1999). A bundle type dual-ascent approach to linear multicommodity min-cost flow problems. Inf. J. Comput. 11: 370–393

    Article  MATH  MathSciNet  Google Scholar 

  9. Frank H., Wolfe P. (1956). An algorithm for quadratic programming. Naval Res. Logist. Q. 3: 95–110

    Article  MathSciNet  Google Scholar 

  10. Fratta L., Gerla M., Kleinrock L. (1973). The flow deviation method: an approach to store-and-forward communication network design. Networks 3: 97–133

    Article  MATH  MathSciNet  Google Scholar 

  11. Gafni E.M., Bertsekas D.P. (1984). Two-metric projection methods for constrained optimization. SIAM J. Control Optim. 22(6): 936–964

    Article  MATH  MathSciNet  Google Scholar 

  12. Glineur F. (2002). Improving complexity of structured convex optimization problems using self concordant barriers. Eur. J. Oper. Res. 143: 291–310

    Article  MATH  MathSciNet  Google Scholar 

  13. Goffin J.-L., Gondzio J., Sarkissian R., Vial J.-P. (1996). Solving nonlinear multicommodity flow problems by the analytic center cutting plane method. Math. Program. 76: 131–154

    MathSciNet  Google Scholar 

  14. Kelley J.E. (1960). The cutting plane method for solving convex programs. J. SIAM 8: 703–712

    MathSciNet  Google Scholar 

  15. Kleinrock L. (1972). Nets, Stochastic Message Flow and Delay, Communications. Dover, New York

    Google Scholar 

  16. Larsson T., Patriksson M. (1995). An augmented lagrangean dual algorithm for link capacity side constrained traffic assignment problems. Transp. Res. 29: 433–455

    Article  Google Scholar 

  17. Larsson T., Di Yuan (2004). An augmented lagrangian algorithm for large scale multicommodity routing. Comput. Optim. Appl. 27(2): 187–215

    Article  MATH  MathSciNet  Google Scholar 

  18. Leblanc, L.: Mathematical programming algorithms for large scale network equilibrium and network design problems. Ph.D. thesis, IE/MD Dept, Northwestern University, Evanston IL (1973)

  19. Leblanc, L., Helgason, R.V., Boyce, D.E.: Improved efficiency of the Frank–Wolfe algorithm for convex network programs. Transportation Science (1985)

  20. Mahey P., Ouorou A., Leblanc L., Chifflet J. (1998). A new proximal decomposition algorithm for routing in telecommunication networks. Networks 31(4): 227–238

    Article  MATH  Google Scholar 

  21. McBride R.D. (1998). Progress made in solving the multicommodity flow problem. SIAM J. Optim. 8(4): 947–955

    Article  MATH  MathSciNet  Google Scholar 

  22. Nesterov Y. (2004). Introductory Lectures on Convex Optimization: A Basic Course. Kluwer, Dordrecht

    MATH  Google Scholar 

  23. Nesterov Y. (2005). Smooth minimization of non-smooth functions. Math. Program. 103(1): 127–152

    Article  MATH  MathSciNet  Google Scholar 

  24. Nesterov Y., Vial J.-P. (1999). Homogeneous analytic center cutting plane methods for convex problems and variational inequalities. SIAM J. Optim. 9(3): 707–728

    Article  MATH  MathSciNet  Google Scholar 

  25. Ouorou A., Mahey P., Vial J.-P. (2000). A survey of algorithms for convex multicommodity flow problems. Manage. Sci. 46: 126–147

    Article  Google Scholar 

  26. Patriksson M. (1994). The Traffic Assignment Problem—Models and Methods. VSP, Utrecht

    Google Scholar 

  27. Poljak B.T. (1977). Subgradient methods: a survey of Soviet research. In: Lemaréchal, C., Mifflin, R. (eds) Nonsmooth Optimization, pp 5–30. Pergamon Press, Oxford

    Google Scholar 

  28. Sheffi Y. (1985). Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Models. Prentice-Hall, New Jersey

    Google Scholar 

  29. Shor N. (1998). Nondifferentiable optimization and polynomial problems. Kluwer, Boston

    MATH  Google Scholar 

  30. Weintraub A., Ortiz C., Gonzales J. (1985). Accelerating convergence of the Franck-Wolfe algorithm. Transp. Res. 19: 113–122

    Article  Google Scholar 

  31. Wolfe, P.: Convergence theory in nonlinear programming. In: Abadie, J. (ed.) Integer and Nonlinear Programming, pp. 1–36 (1970)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-P. Vial.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10107-007-0191-8

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babonneau, F., Vial, JP. ACCPM with a nonlinear constraint and an active set strategy to solve nonlinear multicommodity flow problems. Math. Program. 120, 179–210 (2009). https://doi.org/10.1007/s10107-007-0151-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0151-3

Keywords

Mathematics Subject Classification (2000)

Navigation