Skip to main content
Log in

Smoothing large data sets using discrete thin plate splines

  • Regular Article
  • Published:
Computing and Visualization in Science

Abstract

Traditional thin plate splines use radial basis functions and require the solution of a dense linear system of equations whose size is proportional to the number of data points. Instead of radial basis functions we present a method based on the use of polynomials with local support defined on finite element grids. This method is more efficient when dealing with large data sets as the resulting system of equations is sparse and its size depends only on the number of nodes in the finite element grid. Theory is developed for general d-dimensional data sets and model problems are presented in 3D to study the convergence behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almensa, A., Cohen, L.: Fingerprint image matching by minimization of a thin-plate energy using a two-step algorithm with auxiliary variables. In: Fifth IEEE Workshop on Applications of Computer Vision (WACV’00), Palm Springs, California, USA, December 2000. IEEE

  2. Apprato D., Arcangéli R., Manzanilla R. (1987) Sur la construction de surfaces de classe C k à partir d’un grand nombre de données de Lagrange. RAIRO Modél. Math. Anal. Numér. 21(4):529–555

    MATH  Google Scholar 

  3. Arcangéli, R.: Some applications of discrete D m splines. In: Mathematical methods in computer aided geometric design (Oslo, 1988), p. 35–44. Academic, Boston (1989)

  4. Arcangéli R. Manzanilla R., Torrens J.J. (1997) Approximation spline de surfaces de type explicite comportant des failles. RAIRO Modél. Math. Anal. Numér. 31(5):643–676

    Google Scholar 

  5. Arioli, M.: Backward error analysis and stopping criteria for krylov space method. In: 20th Biennial Conference on Numerical Analysis, page 41 pages, University of Dundee, June 2003

  6. Bab-Hadiashar, A., Suter, D., Jarvis, R.: Optic flow computation using interpolating thin-plate splines. In: Second Asian Conference on Computer Vision (ACCV’95), p. 452–456, Singapore, December 1995

  7. Beatson, R., Greengard, L.: A short course on fast multipole methods. In: Wavelets, multilevel methods and elliptic PDEs (Leicester, 1996), Numer. Math. Sci. Comput., p. 1–37. Oxford University Press, New York (1997)

  8. Beatson, R.K., Goodsell, G., Powell, M.J.D.: On multigrid techniques for thin plate spline interpolation in two dimensions. In: The mathematics of numerical analysis (Park City, UT, 1995), vol. 32 of Lectures in Appl. Math. p. 77–97. Am. Math. Soc., Providence, RI, 1996

  9. Carr J.C., Fright W.R., Beatson R.K. (1997) Surface interpolation with radial basis functions for medical imaging. IEEE Trans Med Imaging 16(1):96–107

    Article  Google Scholar 

  10. Christen P., Hegland M., Nielsen O., Roberts S., Strazdins P., Altas I. (2001) Scalable parallel algorithms for surface fitting and data mining. Parallel Comput 27:941–961

    Article  MATH  Google Scholar 

  11. Ciarlet P.G. (1978) The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam

    MATH  Google Scholar 

  12. Duchon J. (1977) Splines minimizing rotation-invariant. In: Lecture notes in Math, vol 571, p. 85–100. Springer, Berlin Heidelberg New York

  13. Enciso, R., Lewis, J.P., Neumann, U., Mah. J.: 3D tooth shape from radiographs using thin-plate splines. In: MMVR11 - NextMed: Health Horizon, The 11th Annual Medicine Meets Virtual Reality Conferenc, vol. 94 of Studies in Health Technology and Informatics, p. 22–25, IOS press (2003)

  14. Eriksson K., Estep D., Hansbo P., Johnson C. (1996) Computational Differential Equations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  15. Hegland, M., Roberts, S., Altas, I.: Finite element thin plate splines for data mining applications. In: Mathematical methods for curves and surfaces, II (Lillehammer, 1997), Innov. Appl. Math. p. 245–252. Vanderbilt University Press, Nashville (1998)

  16. Hutchinson M.F. (1990) A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines. Comm. Statist. Simulation Comput. 19(2):433–450

    MATH  MathSciNet  Google Scholar 

  17. Lapeer R.J.A., Prager R.W. (2000) 3D shape recovery of a newborn skull using thin-plate splines. Comput. Medial Imaging Grap 24:193–204

    Article  Google Scholar 

  18. Morse, B., Yoo, T.S., Rheingans, P., Chen, D.T., Subramanian, K.R.: Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions. In: Proceedings of International Conference on Shape Modeling and Applications ’01, p. 89–98. IEEE Computer Society Press, May 2001

  19. Powell, M.J.D.: A review of methods for multivariable interpolation at scattered data points. In: The state of the art in numerical analysis (York, 1996), vol. 63 of Inst. Math. Appl. Conf. Ser. New Ser. p. 283–309. Oxford University Press, New York (1997)

  20. Ramsay T. (2002) Spline smoothing over difficult regions. J. R. Stat. Soc. Ser. B Stat. Methodol. 64(2):307–319

    Article  MATH  MathSciNet  Google Scholar 

  21. Roberts S., Hegland M., Altas I. (2003) Approximation of a thin plate spline smoother using continuous piecewise polynomial functions. SIAM J. Numer. Anal. 41(1):208–234

    Article  MATH  MathSciNet  Google Scholar 

  22. Rohr, K., Fornefett, M., Stiehl, H.S.: Approximating thin-plate splines for elastic registration: integration of landmark errors and orientation attributes. In Kuba, A.,Šámal, M., Todd-Pokropek, A. (eds.) Lecture Notes in Computer Science, volume 1613, p. 252–265. Springer (1999)

  23. Sibson R., Stone G. (1991) Computation of thin-plate splines. SIAM J. Sci. Statist. Comput. 12(6):1304–1313

    Article  MATH  MathSciNet  Google Scholar 

  24. Stals, L.: Parallel multigrid on unstructured grids using adaptive finite element methods. PhD thesis, Department Of Mathematics, Australian National University, Australia (1995)

  25. Strakoš, Z., Tichý, P.: On error estimation in the conjugate gradient method and why it works in finite precision computations. Electron. Trans. Numer. Anal. 13:56–80 (electronic) (2002)

    Google Scholar 

  26. Strakoš Z., Tichý P. (2003) On estimation of the A-norm of the error in CG and PCG. PAMM, 3(1):553–554, (electronic)

    Article  Google Scholar 

  27. Torrens, J.J.: Discrete smoothing D m-splines: applications to surface fitting. In: Mathematical methods for curves and surfaces, II (Lillehammer, 1997), Innov. Appl. Math. p. 477–484. Vanderbilt University Press, Nashville (1998)

  28. Wahba, G.: Spline models for observational data, volume 59 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1990)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Stals.

Additional information

Communicated by G. Wittum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stals, L., Roberts, S. Smoothing large data sets using discrete thin plate splines. Comput. Visual Sci. 9, 185–195 (2006). https://doi.org/10.1007/s00791-006-0033-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-006-0033-x

Keywords

Navigation