Skip to main content

Advertisement

Log in

Cooperative R&D with durable goods

  • Published:
Journal of Economics Aims and scope Submit manuscript

Abstract

This paper analyzes the effect of the durability of the good produced by a duopolistic industry on research and development investment in the presence of spillovers. We show that the critical spillover level from which cooperation in R&D increases the level of investment is higher when firms produce durable goods and sell at least some units of their output than when firms produce non-durable goods. Moreover, with R&D cooperation investment is highest with renting firms and lowest with renting–selling firms. These findings indicate that R&D cooperation is more difficult to justify when firms produce durable goods in the presence of intertemporal inconsistency problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Agreements between two or more firms which restrict competition are prohibited by Article 101(1) of the Treaty, subject to some limited exceptions.

  2. The prohibition enacted by Article 101(1) of the EC Treaty does not apply to any agreement that meets Article 101(3) conditions. The Art. 101(3) exemption is normally available where the agreement or practice in question generates economic benefits in terms of lower prices, better quality products or services, faster innovation, etc. that are passed on to consumers, do not impose non essential restrictions and do not eliminate competition completely.

  3. According to Katz (1986), “spillovers” means research done by one firm which can be used by another even if the latter is not given permission (i.e. does not purchase a license) to use the inventive output.

  4. See De Bondt (1996) for an earlier review of the relevant literature.

  5. Saggi and Vettas (2000) analyze sales and leasing strategies in a three-period quantity-setting durable good asymmetric duopoly and find that an increase in the unit cost of a given firm implies a higher ratio of leased units to sales.

  6. The model can be considered as an extension to an oligopolistic case of the monopolistic case considered by Bulow (1982), adding the decisions of firms on their R&D levels.

  7. Amir et al. (2008) introduce the criterion that investing in one research laboratory should be at least as efficient for a firm as investing in several independent laboratories that benefit mutually from spillovers.

  8. Given that the second period is also the last, renting out is identical to selling in that period. We assume that the units rented out in the first period are rented out again in the second.

  9. We assume throughout the paper that the parameters are such that each optimization problem has interior solutions.

  10. Appendix A.1 demonstrates that the level of investment that maximizes social welfare (defined as the sum of the consumer surplus and the profits of the firms), \(x^{**}=\frac{\left( 1+\beta \right) \left( 2a-A\right) -4b\delta }{4b\gamma -\left( 1+\beta \right) ^{2}}\), is higher than the level under all the commercial practices considered here.

  11. \(C_{i}^{t}\) represents the total (first period plus second period) production costs of firm i.

  12. As \(\frac{\partial \pi _{j}^{s}}{\partial q_{2j}}\left( \frac{\partial q_{2j}}{\partial x_{i}}-\frac{\partial q_{2j}}{\partial q_{1j} }\frac{\partial q_{1j}}{\partial x_{i}}\right) =-bq_{1j}\left( \frac{135\beta -73}{192b}\right) \), it emerges that the intertemporal inconsistency effect 2 is negative if \(\beta >\frac{73}{135}\).

  13. Sagasta and Saracho (2008) analyze the effects of durability on the incentives to merge and find that it can be optimal from the viewpoint of social welfare and consumer surplus not to allow firms to sell their output because of the incentives that they have to merge.

  14. The level of investment that would be obtained in a two-period repeated Cournot game that arises with non-durable goods when firms do not cooperate in R&D is \(x_{i}^{*nd}=\frac{4\left( a-A\right) \left( 2-\beta \right) -9b\delta }{9b\gamma -4\left( 1+\beta \right) \left( 2-\beta \right) }\) and when firms cooperate in R&D is \({\hat{x}}_{i}^{nd}=\frac{4\left( a-A\right) \left( 1+\beta \right) -9b\delta }{9b\gamma -4\left( 1+\beta \right) ^{2}}\). Hence, as \({\hat{x}} _{i}^{nd}-x_{i}^{*nd}=\frac{36\left( \gamma \left( a-A\right) -\delta \left( 1+\beta \right) \right) \left( 2\beta -1\right) b}{\left( 9b\gamma -4\left( \beta +1\right) ^{2}\right) \left( 9b\gamma -4\left( 2-\beta \right) \left( 1+\beta \right) \right) }\), \({\hat{x}}_{i}^{nd} >x_{i}^{*nd}\) if and only if \(\beta >\frac{1}{2}.\)

  15. When firms have identical technology and their marginal costs of production are constant and positive, the quantity rented out in each period by a durable goods firm coincides with the quantity produced by a non-durable good firm that faces, instead, the inverse demand function \(p=\alpha -\theta Q\), with \(\alpha =2a\) and \(\theta =2b\). Nevertheless, in our model production costs depend on the R&D level at firms, so it can be shown that the R&D level and the quantity produced by a non-durable good firm are higher than the quantity rented out in each period by a durable good firm.

  16. In the full cooperation case, we find that the level of investment with renting firms and with renting–selling firms is \({\tilde{x}} ^{r}={\tilde{x}}^{r-s}=\frac{\left( \beta +1\right) \left( 2a-A\right) -8b\delta }{8b\gamma -\left( \beta +1\right) ^{2}}\), whereas the level of investment with selling firms is \({\tilde{x}}^{s}=\frac{\left( \beta +1\right) \left( a-A\right) -4b\delta }{4b\gamma -\left( \beta +1\right) ^{2}}\). A comparison of these levels of investment gives \({\tilde{x}}^{r}-{\tilde{x}} ^{s}=\frac{\left( \beta +1\right) \left( 4\delta b\left( \beta +1\right) -a\left( \beta +1\right) ^{2}+4Ab\gamma \right) }{\left( 4b\gamma -\left( \beta +1\right) ^{2}\right) \left( 8b\gamma -\left( \beta +1\right) ^{2}\right) }\), which is always positive if we take into account restriction \(A\ge \frac{\left( 1+\beta \right) \left( a\left( 1+\beta \right) -4b\delta \right) }{4b\gamma }\) which ensures positive marginal production costs with renting and renting–selling firms.

  17. The quantity used in the second period is the sum of the quantities sold in each period. The quantity used in the first period is the sum of the quantity sold and the quantity rented out in that period.

  18. The Routh-Hurwitz stability condition requires that \(\frac{\partial ^{2}\pi _{i}\left( x_{i},x_{j}\right) }{\partial x_{i}^{2}}\frac{\partial ^{2}\pi _{j}\left( x_{i},x_{j}\right) }{\partial x_{j}^{2}}-\frac{\partial ^{2}\pi _{i}\left( x_{i},x_{j}\right) }{\partial x_{i}\partial x_{j}}\frac{\partial ^{2}\pi _{j}\left( x_{i},x_{j}\right) }{\partial x_{j}\partial x_{i}}>0\) (see Hinloopen (2015) for a clarification of the stability condition).

References

  • Amir R, Jin J, Troege M (2008) On additive spillovers and returns to scale in R&D. Int J Ind Organ 26:695–703

    Article  Google Scholar 

  • Bond E, Samuelson L (1986) Durable goods, market structure and the incentives to innovate. Economica 54:57–67

    Article  Google Scholar 

  • Bulow J (1982) Durable-goods monopolists. J Political Econ 90:314–332

    Article  Google Scholar 

  • Carlton D, Gertner R (1989) Market power and mergers in durable-goods industries. J Law Econ 32:S203–S226

    Article  Google Scholar 

  • Cellini R, Lambertini L (2009) Dynamic R&D with spillovers: competition vs cooperation. J Econ Dyn Control 33:568–582

    Article  Google Scholar 

  • Coase R (1972) Durability and monopoly. J Law Econ 15:143–149

    Article  Google Scholar 

  • Dawid H, Kort PM, Kopel M (2013) R&D competition versus R&D cooperation in oligopolistic markets with evolving structure. Int J Ind Organ 31:527–537

    Article  Google Scholar 

  • D’Aspremont C, Jacquemin A (1988) Cooperative and non-cooperative R&D in duopoly with spillovers. Am Econ Rev 78:1133–1137

    Google Scholar 

  • De Bondt R (1996) Spillovers and innovative activities. Int J Ind Organ 15:1–28

    Article  Google Scholar 

  • Fishman A, Rob R (2000) Product innovation by a durable good monopoly. Rand J Econ 31:237–252

    Article  Google Scholar 

  • Fishman A, Rob R (2001) Product durability and innovations: the duopoly case. Penn CARESS Working Papers, Penn Economics Department

  • Hinloopen J (2003) R&D strategic gains due to cooperation. J Econ 80:107–125

    Article  Google Scholar 

  • Hinloopen J (2015) Stability, strategic substitutes, strategic complements. J Econ 116:129–135

    Article  Google Scholar 

  • Kamien MI, Muller E, Zang I (1992) Research joint ventures and R&D cartels. Am Econ Rev 82:1293–1306

    Google Scholar 

  • Katz M (1986) An analysis of cooperative research and development. Rand J Econ 17:527–543

    Article  Google Scholar 

  • Kultti K, Takalo T (1998) R&D spillovers and information exchange. Econ Lett 61:121–123

    Article  Google Scholar 

  • Marjit S (1991) Incentives for cooperative and non-cooperative R and D in duopoly. Econ Lett 37:187–191

    Article  Google Scholar 

  • Sagasta A, Saracho AI (2008) Mergers in durable goods industries. J Econ Behav Organ 68:691–701

    Article  Google Scholar 

  • Saggi K, Vettas N (2000) Leasing versus selling and firm efficiency in oligopoly. Econ Lett 66:361–368

    Article  Google Scholar 

  • Suzumura K (1992) Cooperative and non-cooperative R&D in duopoly with spillovers. Am Econ Rev 82:1307–1320

    Google Scholar 

  • Tesoriere A (2015) Competing R&D joint ventures in Cournot oligopoly with spillovers. J Econ 115:231–256

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank the editor, Giacomo Corneo, two anonymous reviewers, Ana I. Saracho, Iñaki Aguirre, and Miguel González Maestre for helpful comments and suggestions. The usual disclaimer applies. Financial support from Spain’s Ministerio de Economía y Competitividad (ECO2012-35820 and ECO2015-64467-R (MINECO/FEDER, UE)) and from the Departamento de Educación, Universidades e Investigación del Gobierno Vasco (IT-783-13) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amagoia Sagasta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

APPENDIX A

APPENDIX A

1.1 A.1 Socially efficient level of R&D

Social welfare is defined as the sum in present value of the consumer surplus and the producer‘s profits. The goal is to find the optimal quantities and the optimal investment level that maximize social welfare. We denote by \(Q_{t}\) the output used in the market in each period t, where \(t=1,2\).Footnote 17 Consumer surplus and the profits of firms can be written, respectively, as

$$\begin{aligned}&CS(Q)=\frac{b}{2}\underset{t=1,2}{ {\displaystyle \sum } }(Q_{t})^{2} \\&\pi \left( Q\right) =\left( a-bQ_{1}\right) Q_{1}+\left( a-bQ_{2}\right) Q_{2}-\left( A-\left( 1+\beta \right) x\right) Q_{2}-2\delta x-\gamma x^{2}. \end{aligned}$$

So assuming a symmetric interior solution, the efficient level of R&D and the socially efficient amount of output that are obtained from the maximization of the social welfare can be written respectively as

$$\begin{aligned}&x^{**}=\frac{\left( 1+\beta \right) \left( 2a-A\right) -4b\delta }{4b\gamma -\left( 1+\beta \right) ^{2}} \\&Q_{1}^{**}=Q_{2}^{**}=\frac{2\left[ \left( 2a-A\right) \gamma -\left( 1+\beta \right) \delta \right] }{4b\gamma -\left( 1+\beta \right) ^{2}}. \end{aligned}$$

We now demonstrate that the level of investment that maximizes social welfare is higher than the level of investment under all the commercial practices considered, with both R&D cooperation and R&D competition.

With R&D cooperation the following emerges:

$$\begin{aligned} x^{**}-{\hat{x}}_{i}^{r}&=\frac{\left( 1+\beta \right) \left( 2a-A\right) -4b\delta }{4b\gamma -\left( 1+\beta \right) ^{2}}-\frac{\left( \beta +1\right) \left( 2a-A\right) -9b\delta }{9b\gamma -\left( \beta +1\right) ^{2}}\\&=\frac{5\left( \left( 2a-A\right) \gamma -\left( 1+\beta \right) \delta \right) \left( \beta +1\right) b}{\left( 9b\gamma -\left( \beta +1\right) ^{2}\right) \left( 4b\gamma -\left( 1+\beta \right) ^{2}\right) } \end{aligned}$$

The stability conditionsFootnote 18 and the second order conditions of the maximization problems imply that \(4b\gamma -\left( 1+\beta \right) ^{2}>0\) and \(9b\gamma -\left( \beta +1\right) ^{2}>0\), so it must hold that \(\left( 1+\beta \right) \left( 2a-A\right) >4b\delta \) and \(4b\gamma >\left( 1+\beta \right) ^{2}\). Multiplying these inequalities gives \(\left( 2a-A\right) \gamma >\delta \left( 1+\beta \right) \) and as a result \(x^{**}>{\hat{x}}_{i}^{r}\) . The proof of proposition 2 shows that \({\hat{x}}_{i}^{r}>{\hat{x}}_{i}^{s}>{\hat{x}}_{i}^{r-s}\), so this gives \(x^{**}>{\hat{x}}_{i}^{r}>{\hat{x}}_{i}^{s}>{\hat{x}}_{i}^{r-s}\).

With R&D competition, we first demonstrate that \(x^{**}>x_{i}^{*r}.\)

$$\begin{aligned} x^{**}-x_{i}^{*r}&=\frac{\left( 1+\beta \right) \left( 2a-A\right) -4b\delta }{4b\gamma -\left( 1+\beta \right) ^{2}}-\frac{\left( 2-\beta \right) \left( 2a-A\right) -9b\delta }{9b\gamma -\left( 2-\beta \right) \left( 1+\beta \right) }\\&=\frac{\left( \left( 2a-A\right) \gamma -\left( 1+\beta \right) \delta \right) \left( 13\beta +1\right) b}{\left( 9b\gamma -\left( 2-\beta \right) \left( 1+\beta \right) \right) \left( 4b\gamma -\left( 1+\beta \right) ^{2}\right) } \end{aligned}$$

The conditions for the equilibrium to be stable ensure that the denominator is positive and it is proved above that \(\left( 2a-A\right) \gamma >\delta \left( 1+\beta \right) \), so it emerges that \(x^{**}>x_{i}^{*r}\).

Second, we demonstrate that \(x^{**}>x_{i}^{*r-s}\).

$$\begin{aligned}&x^{**}-x_{i}^{*r-s} =\frac{\left( 1+\beta \right) \left( 2a-A\right) -4b\delta }{4b\gamma -\left( 1+\beta \right) ^{2}}-\frac{4\left( a-A\right) \left( 3-2\beta \right) -25b\delta }{25b\gamma -4\left( \beta +1\right) \left( 3-2\beta \right) }\\&\quad =\frac{-\left( 12a+16a\beta -23b\delta -23Ab\gamma -2ab\gamma +34b\beta \delta +57Ab\beta \gamma -82ab\beta \gamma -4a\beta ^{2}-8a\beta ^{3}+57b\beta ^{2}\delta \right) }{\left( 4b\gamma -\left( 1+\beta \right) ^{2}\right) \left( 25b\gamma -4\left( \beta +1\right) \left( 3-2\beta \right) \right) } \end{aligned}$$

Taking into account the constraint \(Ab\gamma >\frac{4a\left( 1+\beta \right) \left( 3-2\beta \right) -25b\delta \left( 1+\beta \right) }{25}\) which ensures non-negative production costs (\(x_{i}^{*}+\beta x_{j}^{*}\le A\)) for renting–selling firms with R&D competition and the constraint \(A\gamma <a\gamma -\delta \left( 1+\beta \right) \) which ensures \(x_{i}^{*r-s}>0\), it emerges that \(23b\delta -16a\beta -12a+23Ab\gamma +2ab\gamma -34b\beta \delta -57Ab\beta \gamma +82ab\beta \gamma +4a\beta ^{2}+8a\beta ^{3}-57b\beta ^{2}\delta>\)\(23b\delta -16a\beta -12a+23\left( \frac{4a\left( 1+\beta \right) \left( 3-2\beta \right) -25b\delta \left( 1+\beta \right) }{25}\right) +2ab\gamma -34b\beta \delta -57b\beta \left( a\gamma -\delta \left( 1+\beta \right) \right) +82ab\beta \gamma +4a\beta ^{2}+8a\beta ^{3}-57b\beta ^{2} \delta =\)\(\frac{1}{25}a\left( 25\beta +2\right) \left( 25b\gamma -4\left( \beta +1\right) \left( 3-2\beta \right) \right) >0\) and this expression is positive because the stability conditions hold. \(x^{**}>x_{i}^{*r}\) and \(x^{**}>x_{i}^{*r-s}\) and we show in the proof of proposition 2 that \(x_{i}^{*r}>x_{i}^{*s}\), so it can be concluded that the level of investment that maximizes social welfare is higher than the level of investment under all the commercial practices considered.

1.2 A.2 Proof of Proposition 1.

i) First we demonstrate that \({\hat{x}}_{i}^{r}>{\hat{x}}_{i}^{s}\).

$$\begin{aligned} {\hat{x}}_{i}^{r}-{\hat{x}}_{i}^{s}=\frac{\left( \beta +1\right) \left[ \left( -32\right) a\left( \beta +1\right) ^{2}+\gamma b\left( 115A+58a\right) +115\delta b\left( \beta +1\right) \right] }{\left( 9b\gamma -\left( \beta +1\right) ^{2}\right) \left( 128b\gamma -27\left( \beta +1\right) ^{2}\right) } \end{aligned}$$

The stability conditions and the second order conditions ensure that the denominator is positive. Thus, \({\hat{x}}_{i}^{r}>{\hat{x}}_{i}^{s}\) if the numerator is positive.

Taking into account the constraint that ensures non-negative production costs for renting firms with R&D cooperation, \(A>\frac{\left( 1+\beta \right) \left( 2a\left( 1+\beta \right) -9b\delta \right) }{9b\gamma }\), it emerges that

\(\left( -32a\left( \beta +1\right) ^{2}+\gamma b\left( 115A+58a\right) +115\delta b\left( \beta +1\right) \right)>\)

\( \left( -32a\left( \beta +1\right) ^{2}+\gamma b\left( 115\left( \frac{\left( 1+\beta \right) \left( 2a\left( 1+\beta \right) -9b\delta \right) }{9b\gamma }\right) +58a\right) +115\delta b\left( \beta +1\right) \right) \)

\(=\frac{58}{9}a\left( 9b\gamma -\left( \beta +1\right) ^{2}\right) >0\) and this expression is positive because the stability conditions hold.

Second, we demonstrate that \({\hat{x}}_{i}^{s}>{\hat{x}}_{i}^{r-s}\)

$$\begin{aligned} {\hat{x}}_{i}^{s}-{\hat{x}}_{i}^{r-s}=\frac{\left( \beta +1\right) \left( 20a\left( \beta +1\right) ^{2}-163b\delta -163Ab\gamma +38ab\gamma -163b\beta \delta \right) }{\left( 128b\gamma -27\left( \beta +1\right) ^{2}\right) \left( 25b\gamma -4\left( \beta +1\right) ^{2}\right) } \end{aligned}$$

As the stability conditions and second-order conditions ensure that the denominator is positive, consider the numerator

$$\begin{aligned} {\hat{x}}_{i}^{s}>{\hat{x}}_{i}^{r-s}\hbox { if }\left( 20a\left( \beta +1\right) ^{2}-163b\delta -163Ab\gamma +38ab\gamma -163b\beta \delta \right) >0 \end{aligned}$$

Taking into account constraint \(Ab\gamma \le \frac{5\gamma ba+4a\left( \beta +1\right) ^{2}-30b\delta \left( \beta +1\right) }{30}\), which ensures \(q_{2i}>q_{1i}^{r}\) for renting–selling firms with R&D cooperation, it emerges that

$$\begin{aligned}&\left( 20a\left( \beta +1\right) ^{2}-163b\delta -163Ab\gamma +38ab\gamma -163b\beta \delta \right) \\&\quad >(20a\left( \beta +1\right) ^{2}-163b\delta -163\left( \frac{5\gamma ba+4a\left( \beta +1\right) ^{2}-30b\delta \left( \beta +1\right) }{30}\right) \\&\quad +38ab\gamma -163b\beta \delta ) \end{aligned}$$

\(=\frac{13}{30}a(25b\gamma -4\left( \beta +1\right) ^{2})\). And this expression is positive because the stability condition \(b\gamma >\frac{4\left( 1+\beta \right) ^{2}}{25}\) for renting–selling firms with R&D cooperation holds.

ii) First, we demonstrate that \(x_{i}^{*r}>x_{i}^{*s}\).

$$\begin{aligned}&x_{i}^{*r}-x_{i}^{*s}\nonumber \\&\quad =\frac{\left( 559b\delta -256a+559Ab\gamma +34ab\gamma +230b\beta \delta -329Ab\beta \gamma +82ab\beta \gamma +192a\beta ^{2}-64a\beta ^{3}-329b\beta ^{2}\delta \right) }{\left[ 9b\gamma -\left( 2-\beta \right) \left( 1+\beta \right) \right] \left( 256b\gamma -\left( \beta +1\right) \left( 119-65\beta \right) \right) } \end{aligned}$$

The stability conditions and the second order conditions ensure that the denominator is positive. Thus, \(x_{i}^{*r}>x_{i}^{*s}\) if the numerator is positive. Taking into account the constraint \(A>\frac{\left( 1+\beta \right) \left( 2a\left( 2-\beta \right) -9b\delta \right) }{9b\gamma }\) which ensures non-negative production costs (\(x_{i}^{*}+\beta x_{j}^{*}\le A\)) for renting firms with R&D competition, it emerges that:

$$\begin{aligned}&\left( 559b\delta -256a+559Ab\gamma +34ab\gamma +230b\beta \delta -329Ab\beta \gamma +82ab\beta \gamma \right. \\&\qquad \left. +192a\beta ^{2}-64a\beta ^{3}-329b\beta ^{2}\delta \right) \\&\quad =(230b\left( \delta +A\gamma +\beta \delta \right) -256a+329b\delta +329Ab\gamma +34ab\gamma -329Ab\beta \gamma \\&\qquad +\,82ab\beta \gamma +192a\beta ^{2}-64a\beta ^{3}-329b\beta ^{2}\delta )>\\&\quad >(230b\left( \delta +\frac{\left( 1+\beta \right) \left( 2a\left( 2-\beta \right) -9b\delta \right) }{9b\gamma }\gamma +\beta \delta \right) \\&\qquad -\,256a+329b\delta +329Ab\gamma +34ab\gamma \\&\qquad -\,329Ab\beta \gamma +82ab\beta \gamma +192a\beta ^{2}-64a\beta ^{3}-329b\beta ^{2}\delta )\\&\quad =\frac{1}{9}(460a\beta -1384a+2961b\left( \delta +A\gamma \right) \\&\qquad +\,306ab\gamma -2961Ab\beta \gamma +738ab\beta \gamma +1268a\beta ^{2}-576a\beta ^{3}-2961b\beta ^{2}\delta ) \end{aligned}$$

Taking into account the constraint \(b\left( \delta +A\gamma \right) \ge \frac{4a\left( 1+\beta \right) \left( 3-2\beta \right) -25b\delta \beta }{25}\) which ensures non-negative production costs for renting–selling firms with R&D competition and the constraint \(Ab\gamma <\frac{4a\left( 1+\beta \right) \left( 3-2\beta \right) +5ab\gamma -30b\delta \left( 1+\beta \right) }{30}\) which ensures \(q_{2i}>q_{1i}^{r}\) for renting–selling firms with R&D competition, it emerges that

$$\begin{aligned}&\frac{1}{9}(460a\beta -1384a+2961b\left( \delta +A\gamma \right) +306ab\gamma -2961Ab\beta \gamma \\&\qquad +\,738ab\beta \gamma +1268a\beta ^{2}-576a\beta ^{3}-2961b\beta ^{2}\delta )\\&\quad >\frac{1}{9}(460a\beta -1384a+2961\left( \frac{4a\left( 1+\beta \right) \left( 3-2\beta \right) -25b\delta \beta }{25}\right) \\&\qquad +\,306ab\gamma -2961\left( \frac{4a\left( 1+\beta \right) \left( 3-2\beta \right) +5ab\gamma -30b\delta \left( 1+\beta \right) }{30}\right) \beta \\&\qquad +\,738ab\beta \gamma +1268a\beta ^{2}-576a\beta ^{3}-2961b\beta ^{2}\delta )\\&\quad =\frac{1}{450}a\left( 15\,300b\gamma -12\,532\beta +\,12\,225b\beta \gamma -3716\beta ^{2}+10\,680\beta ^{3}+1864\right) \end{aligned}$$

Finally, taking into account the stability condition for renting firms with R&D cooperation, \(b\gamma >\frac{\left( 1+\beta \right) ^{2}}{9}\) it emerges that

\(\frac{1}{450}a\left( 15\,300b\gamma -12\,532\beta +12\,225b\beta \gamma -3716\beta ^{2}+10\,680\beta ^{3}+1864\right) \)

\(>\frac{1}{450}a\left( 15\,300\frac{\left( 1+\beta \right) ^{2}}{9}-12\,532\beta \,{+}\,12\,225\frac{\left( 1+\beta \right) ^{2}}{9}\beta \,{-}\,3716\beta ^{2}\,{+}\,10\,680\beta ^{3}\,{+}\,1864\right) \)

\(=\frac{1}{1350}\left( 36\,115\beta ^{2}-34\,013\beta +10\,692\right) \left( \beta +1\right) a\). And this expression is positive if \(0<\beta <1\).

Second, it needs to be shown that \(x_{i}^{*r}\gtreqless x_{i}^{*r-s}.\)

Consider the following example: \(a=130\), \(A=18\), \(\beta =0.4\), \(\delta =25\), \(\gamma =2\), and \(b=1\). In this case, \(x_{i}^{*r}=10.29\) and \(x_{i}^{*r-s}=9.57\). Therefore, \(x_{i}^{*r}>x_{i}^{*r-s}\) .

However, if \(a=200\), \(A=10\), \(\beta =0.3\), \(\delta =35\), \(\gamma =8\), and \(b=1\), then \(x_{i}^{*r}=4.986\) and \(x_{i}^{*r-s}=5.060\). Therefore, \(x_{i}^{*r}<x_{i}^{*r-s}.\)\(\square \)

1.3 A.3 Proof of Proposition 2.

If firms rentout their output, then

$$\begin{aligned} x_{i}^{*r}-{\hat{x}}_{i}^{r}&=\frac{\left( 2-\beta \right) \left( 2a-A\right) -9b\delta }{9b\gamma -\left( 2-\beta \right) \left( 1+\beta \right) }-\frac{\left( \beta +1\right) \left( 2a-A\right) -9b\delta }{9b\gamma -\left( \beta +1\right) ^{2}}\\&=\frac{9\left( \left( 2a-A\right) \gamma -\left( 1+\beta \right) \delta \right) \left( 1-2\beta \right) b}{\left( 9b\gamma -\left( 2-\beta \right) \left( 1+\beta \right) \right) \left( 9b\gamma -\left( \beta +1\right) ^{2}\right) }\text {.} \end{aligned}$$

The stability conditions and the second order conditions of the maximization problems imply that \(9b\gamma -\left( 2-\beta \right) \left( 1+\beta \right) >0\) and \(9b\gamma -\left( \beta +1\right) ^{2}>0\), so it must hold that \(\left( 2-\beta \right) \left( 2a-A\right) >9b\delta \) and \(9b\gamma >\left( 2-\beta \right) \left( 1+\beta \right) \). Multiplying these inequalities gives \(\left( 2a-A\right) \gamma >\left( 1+\beta \right) \delta \) and as a result \({\hat{x}}_{i}^{r}-x_{i}^{*r}>0\) if and only if \(\beta >\frac{1}{2} \).

If firms sell their output, then

$$\begin{aligned} \left( x_{i}^{*s}-{\hat{x}}_{i}^{s}\right) =\frac{32H}{\left( 256b\gamma -\left( \beta +1\right) \left( 119-65\beta \right) \right) \left( 128b\gamma -27\left( \beta +1\right) ^{2}\right) } \end{aligned}$$

with

$$\begin{aligned} H= & {} 264ab\gamma +216b\beta \delta +476Ab\beta \gamma -440ab\beta \gamma -260b\left( \delta +A\gamma \right) \\&-11a\left( \beta +1\right) +476b\beta ^{2} \delta +11a\beta ^{2}\left( \beta +1\right) \end{aligned}$$

The stability conditions and the second order conditions ensure that the denominator is positive.

First, it is demonstrated that when \(\beta >\frac{260}{476}\), (i) \(x_{i}^{*s}<{\hat{x}}_{i}^{s}\) if \(\beta >\frac{25}{39}\) and (ii) \(x_{i}^{*s}>{\hat{x}}_{i}^{s}\) if \(\beta <\frac{3}{5}\)

  1. (i)

    It holds that \(x_{i}^{*s}<{\hat{x}}_{i}^{s}\) if \(H<0\). Taking into account the constraint which ensures positive second period output with R&D cooperation, \(Ab\gamma <\frac{32b\gamma a+7a\left( \beta +1\right) ^{2}-80b\delta \left( \beta +1\right) }{80}\), then

    $$\begin{aligned}&H<264ab\gamma +216b\beta \delta +\left( \frac{32b\gamma a+7a\left( \beta +1\right) ^{2}-80b\delta \left( \beta +1\right) }{80}\right) \\&\qquad \times \left( 476\beta -260\right) -440ab\beta \gamma -260b\delta -11a\left( \beta +1\right) +476b\beta ^{2}\delta \\&\qquad +11a\beta ^{2}\left( \beta +1\right) \\&\quad =\left( -\frac{1}{20}\right) a\left( 39\beta -25\right) \left( 128b\gamma -27\left( \beta +1\right) ^{2}\right) \end{aligned}$$

    As \(\left( 128b\gamma -27\left( \beta +1\right) ^{2}\right) >0\) for the stability condition for selling firms with R&D cooperation, it holds that \({\hat{x}}_{i}^{s}>x_{i}^{*s}\) if \(\beta >\frac{25}{39}\).

  2. (ii)

    It holds that \(x_{i}^{*s}>{\hat{x}}_{i}^{s}\) if \(H>0\). Taking into account the constraint \(Ab\gamma >\frac{\left( 1+\beta \right) \left( 22a\left( 1+\beta \right) -128b\delta \right) }{128}\) that ensures non-negative production costs, \(x_{i}^{*}+\beta x_{j}^{*}\le A\), then

    $$\begin{aligned}&H>264ab\gamma +216b\beta \delta +\frac{\left( 1+\beta \right) \left( 22a\left( 1+\beta \right) -128b\delta \right) }{128}\left( 476\beta -260\right) \\&\qquad -\,440ab\beta \gamma -260b\delta -11a\left( \beta +1\right) +476b\beta ^{2}\delta +11a\beta ^{2}\left( \beta +1\right) \\&\quad =\left( \frac{11}{16}\right) a\left( 3-5\beta \right) \left( 128b\gamma -27\left( \beta +1\right) ^{2}\right) \end{aligned}$$

As \(\left( 128b\gamma -27\left( \beta +1\right) ^{2}\right) >0\) for the stability condition, it holds that \(x_{i}^{*s}>{\hat{x}}_{i}^{s}\) if \(\frac{260}{476}<\beta <\frac{3}{5}\).

Second, we demonstrate that when \(\beta <\frac{260}{476}\), \(x_{i}^{*s} >{\hat{x}}_{i}^{s}\).

Taking into account the constraint which ensures that \({\hat{x}}_{i}^{s}\,{>}\,0\), \(A\,{<}\,\left( \frac{22a\left( \beta +1\right) -128b\delta }{27\left( \beta +1\right) }\right) \), it holds that \(H>\)\(264ab\gamma +216b\beta \delta +\left( \frac{22a\left( \beta +1\right) -128b\delta }{27\left( \beta +1\right) }\right) b\gamma \left( 476\beta -260\right) -440ab\beta \gamma -260b\delta -11a\left( \beta +1\right) +476b\beta ^{2} \delta +11a\beta ^{2}\left( \beta +1\right) =\)

\(\left( \frac{1}{27\left( \beta +1\right) }\right) \left( 128b\gamma -27\left( \beta +1\right) ^{2}\right) \left( 11a-11a\beta ^{2}+b\delta \left( 260-476\beta \right) \right) >0\). Thus it emerges that \(x_{i}^{*s}>{\hat{x}}_{i}^{s}\) if \(\frac{260}{476}>\beta \).

Taking into account that \(x_{i}^{*s}>{\hat{x}}_{i}^{s}\) if \(\beta <\frac{3}{5}\), that \(x_{i}^{*s}<{\hat{x}}_{i}^{s}\) if \(\beta >\frac{25}{39}\), that \({\hat{x}}_{i}^{s}\) is increasing with \(\beta \) (the denominator is decreasing with \(\beta \) and the numerator is increasing with \(\beta \) as \(22a-27A>0\) when \({\hat{x}}_{i}^{s}>0\)) and that \(x_{i}^{*s}\) is decreasing with \(\beta \) if \(\beta >\frac{54}{130}\) (the numerator is decreasing with \(\beta \) and the denominator is increasing with \(\beta \) if \(\beta >\frac{54}{130}\)), there must be a critical value \(\beta ^{*}\) that satisfies \(\frac{3}{5}<\beta ^{*}<\frac{25}{39}\) such that \({\hat{x}}_{i}^{s}>x_{i}^{*s}\) if and only if \(\beta >\beta ^{*}\).

When firms both rent out and sell their output, then

$$\begin{aligned} {\hat{x}}_{i}^{r-s}-x_{i}^{*r-s}&=\left( \frac{4\left( a-A\right) \left( \beta +1\right) -25b\delta }{25b\gamma -4\left( \beta +1\right) ^{2} }\right) -\left( \frac{4\left( a-A\right) \left( 3-2\beta \right) -25b\delta }{25b\gamma -4\left( \beta +1\right) \left( 3-2\beta \right) }\right) \\&=\frac{100b\left( 3\beta -2\right) \left( \left( a-A\right) \gamma -\delta \left( \beta +1\right) \right) }{\left( 25b\gamma -4\left( \beta +1\right) ^{2}\right) \left( 25b\gamma -4\left( \beta +1\right) \left( 3-2\beta \right) \right) } \end{aligned}$$

The conditions that assure the stability of the equilibrium imply that \(25b\gamma -4\left( \beta +1\right) ^{2}>0\) and \(25b\gamma -4\left( \beta +1\right) \left( 3-2\beta \right) >0\), so it must hold that \(4\left( a-A\right) \left( \beta +1\right) >25b\delta \) and \(25b\gamma >4\left( \beta +1\right) ^{2}\). Multiplying these inequalities gives \(\left( a-A\right) \gamma >\delta \left( \beta +1\right) \) and as a result \(\hat{x}_{i}^{r-s}-x_{i}^{*r-s}>0\) if and only if \(\beta >\frac{2}{3}\)\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagasta, A. Cooperative R&D with durable goods. J Econ 128, 239–258 (2019). https://doi.org/10.1007/s00712-019-00664-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00712-019-00664-w

Keywords

JEL Classification

Navigation