Skip to main content
Log in

Harnack inequality and principal eigentheory for general infinity Laplacian operators with gradient in \(\mathbb {R}^N\) and applications

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Under the lack of variational structure and nondegeneracy, we investigate three notions of generalized principal eigenvalue for a general infinity Laplacian operator with gradient and homogeneous term. A Harnack inequality is proved to support our analysis. This is a continuation of our first work (Biswas and Vo in Liouville theorems for infinity Laplacian with gradient and KPP type equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. https://doi.org/10.2422/2036-2145.202105_050) and a contribution in the development of the theory of generalized principal eigenvalue beside the works (Berestycki et al. in Commun Pure Appl Math 47(1):47–92, 1994; Berestycki and Rossi in JEMS 8:195–215, 2006; Berestycki and Rossi in Commun Pure Appl Math 68(6):1014–1065, 2015; Berestycki et al. in J Math Pures Appl 103:1276–1293, 2015; Nguyen and Vo in Calc Var Partial Differ Equ 58(3):102 2019). We use these notions to characterize the validity of maximum principle and study the existence, nonexistence and uniqueness of positive solutions of Fisher-KPP type equations in the whole space. The sliding method is intrinsically improved for infinity Laplacian to solve the problem. The results are related to the Liouville type results, which will be meticulously explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S.: On positivity and decay of solutions of second order elliptic equations on Riemannian manifolds. In: Methods of Functional Analysis and Theory of Elliptic Equations, Naples: 19–52, p. 1983. Liguori, Naples (1982)

  2. Aronsson, G.: Minimization problems for the functional \(\sup _x F (x, f (x), f^{\prime }(x))\). Ark. Mat. 6, 33–53 (1965)

    Article  MathSciNet  Google Scholar 

  3. Aronsson, G.: Minimization problems for the functional \(\sup _x F (x, f (x), f^{\prime }(x))\). II. Ark. Mat. 6, 409–431 (1966)

    Article  Google Scholar 

  4. Aronsson, G.: Extension of functions satisfying Lipschitz conditions. Ark. Mat. 6, 551–561 (1967)

    Article  MathSciNet  Google Scholar 

  5. Aronsson, G., Crandall, M.G., Juutinen, P.: A tour of the theory of absolutely minimizing functions. Bull. Am. Math. Soc. (N.S.) 41(4), 439–505 (2004)

  6. Araújo, D.J., Leitão, R., Teixeira, E.V.: Infinity Laplacian equation with strong absorptions. J. Funct. Anal. 270, 2249–2267 (2016)

    Article  MathSciNet  Google Scholar 

  7. Biswas, A., Roychowdhury, P.: Generalized principal eigenvalues of convex nonlinear elliptic operators in \({\mathbb{R}}^N\). Adv. Calculus Var. (to appear) (2020)

  8. Biswas, A., Vo, H.-H.: Liouville theorems for infinity Laplacian with gradient and KPP type equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. https://doi.org/10.2422/2036-2145.202105_050

  9. Armstrong, S.N., Smart, C.K., Somersille, S.J.: An infinity Laplace equation with gradient term and mixed boundary conditions. Proc. Am. Math. Soc. 139(5), 1763–1776 (2011)

    Article  MathSciNet  Google Scholar 

  10. Berestycki, H., Nirenberg, L., Varadhan, S.R.S.: The principal eigenvalue and maximum principle for second-order elliptic operators in general domains. Commun. Pure Appl. Math. 47(1), 47–92 (1994)

    Article  MathSciNet  Google Scholar 

  11. Berestycki, H., Capuzzo Dolcetta, I., Porretta, A., Rossi, L.: Maximum Principle and generalized principal eigenvalue for degenerate elliptic operators. J. Math. Pures Appl. 103, 1276–1293 (2015)

    Article  MathSciNet  Google Scholar 

  12. Berestycki, H., Hamel, F., Nadirashvili, N.: The speed of propagation for KPP type problems. II. General domains. J. Am. Math. Soc. 23, 1–34 (2010)

  13. Berestycki, H., Hamel, F., Rossi, L.: Liouville-type results for semilinear elliptic equations in unbounded domains. Ann. Mat. Pura Appl. (4) 186(3), 469–507 (2007)

  14. Berestycki, H., Rossi, L.: Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains. Commun. Pure Appl. Math. 68(6), 1014–1065 (2015)

    Article  MathSciNet  Google Scholar 

  15. Berestycki, H., Rossi, L.: On the principal eigenvalue of elliptic operators in \(\mathbb{R}^N\) and applications. JEMS 8, 195–215 (2006)

    Article  MathSciNet  Google Scholar 

  16. Bhattacharya, T., Marazzi, L.: An eigenvalue problem for the infinity-Laplacian. Electron. J. Differ. Equ. 47,(2013)

  17. Bhattacharya, T.: An elementary proof of the Harnack inequality for non-negative infinity-superharmonic functions. Electron. J. Differ. Equ. 44,(2001)

  18. Bhattacharya, T.: A Boundary Harnack Principle for Infinity-Laplacian and Some Related Results. Boundary Value Problems (2007)

  19. Birindelli, I., Demengel, F.: First eigenvalue and maximum principle for fully nonlinear singular operators. Adv. Differ. Equ. 11(1), 91–119 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Caselles, V., Morel, J.-M., Sbert, C.: An axiomatic approach to image interpolation. IEEE Trans. Image Process. 7, 376–386 (1998)

    Article  MathSciNet  Google Scholar 

  21. Charro, F., Peral, I.: Zero order perturbations to fully nonlinear equations: comparison, existence and uniqueness. Commun. Contemp. Math. 11, 131–164 (2009)

    Article  MathSciNet  Google Scholar 

  22. Crandall, M. G.: A visit with the \(\infty \)-Laplace equation. In: Calculus of Variations and Nonlinear Partial Differential Equations, Lecture Notes in Math., vol. 1927, pp. 75–122. Springer, Berlin (2008)

  23. Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second-order partial differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992)

    Article  MathSciNet  Google Scholar 

  24. da Silva, J.V., Rossi, J., Salort, A.M.: Maximal solutions for the \(\infty \)-eigenvalue problem. Adv. Calc. Var. 12(2), 181–191 (2019)

    Article  MathSciNet  Google Scholar 

  25. D’Onofrio, L., Giannetti, F., Iwaniec, T., Manfredi, J., Radice, T.: Divergence forms of the \(\infty \)-Laplacian. Publ. Mat. 50(1), 229–248 (2006)

    Article  MathSciNet  Google Scholar 

  26. Evans, L.: Estimates for smooth absolutely minimizing Lipschitz extensions. Electronic J. Differ. Equ. 3, 1–10 (1993)

    MathSciNet  MATH  Google Scholar 

  27. Furusho, Y., Ogura, Y.: On the existence of bounded positive solutions of semilinear elliptic equations in exterior domains. Duke Math. J. 48(3), 497–521 (1981)

    Article  MathSciNet  Google Scholar 

  28. Juutinen, P.: Principal eigenvalue of a very badly degenerate operator and applications. J. Differ. Equ. 236(2), 532–550 (2007)

    Article  MathSciNet  Google Scholar 

  29. Juutinen, P., Lindqvist, P.: On the higher eigenvalues for the \(\infty \)-eigenvalue problem. Calc. Var. Partial Differ. Equ. 23(2), 169–192 (2005)

  30. Juutinen, P., Lindqvist, P., Manfredi, J.J.: The \(\infty \)-eigenvalue problem. Arch. Ration. Mech. Anal. 148(2), 89–105 (1999)

    Article  MathSciNet  Google Scholar 

  31. Lindqvist, P.: Notes on the infinity Laplace equation. Springer Briefs in Mathematics. BCAM Basque Center for Applied Mathematics, Bilbao. Springer, Cham (2016)

  32. Lindqvist, P., Manfredi, J.: The Harnack inequality for \(\infty \)-harmonic functions. Electron. J. Differ. Equ. 04,(1995)

  33. López-Soriano, R., Navarro-Climent, J.C., Rossi, J.D.: The infinity Laplacian with a transport. J. Math. Anal. Appl. 398(2), 752–765 (2013)

    Article  MathSciNet  Google Scholar 

  34. Nussbaum, R. D., Pinchover, Y.: On variational principles for the generalized principal eigenvalue of second order elliptic operators and some applications. J. Anal. Math. 59:161–177 (Festschrift on the occasion of the 70th birthday of Shmuel Agmon) (1992)

  35. Nguyen, P.-T., Vo, H.-H.: On the generalized principal eigenvalue of quasilinear operator: definitions and qualitative properties. Calc. Var. Partial Differ. Equ. 58(3), 102 (2019)

    Article  MathSciNet  Google Scholar 

  36. Nguyen, P.-T., Vo, H.-H.: Existence, uniqueness and qualitative properties of positive solutions of quasilinear elliptic equations. J. Funct. Anal. 269, 3120–3146 (2015)

    Article  MathSciNet  Google Scholar 

  37. Patrizi, S.: The principal eigenvalue of the \(\infty \)-Laplacian with the Neumann boundary condition. ESAIM Control Optim. Calc. Var. 17(2), 575–601 (2011)

    Article  MathSciNet  Google Scholar 

  38. Peres, Y., Schramm, O., Sheffield, S., Wilson, D.: Tug-of-war and the infinity Laplacian. J. Am. Math. Soc. 22, 167–210 (2009)

    Article  MathSciNet  Google Scholar 

  39. Portilheiro, M., Vázquez, J.L.: A porous medium equation involving the infinity-Laplacian. Viscosity solutions and asymptotic behavior. Commun. Partial Differ. Equ. 37(5), 753–793 (2012)

  40. Portilheiro, M., Vázquez, J.L.: Degenerate homogeneous parabolic equations associated with the infinity-Laplacian. Calc. Var. Partial Differ. Equ. 46(3–4), 705–724 (2013)

    Article  MathSciNet  Google Scholar 

  41. Yu, Y.: Some properties of the ground states of the infinity Laplacian. Indiana Univ. Math. J. 56, 947–964 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of Anup Biswas was supported in part by DST-SERB Grants EMR/2016/004810 and MTR/2018/000028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoang-Hung Vo.

Additional information

Communicated by P. H. Rabinowitz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, A., Vo, HH. Harnack inequality and principal eigentheory for general infinity Laplacian operators with gradient in \(\mathbb {R}^N\) and applications. Calc. Var. 61, 122 (2022). https://doi.org/10.1007/s00526-022-02227-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02227-2

Mathematics Subject Classification

Navigation