Skip to main content
Log in

Strong convergence of the Bopp–Podolsky–Schrödinger–Proca system to the Schrödinger–Poisson–Proca system in the electro-magneto-static case

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We prove strong convergence of the Bopp–Podolsky–Schrödinger–Proca system to the Schrödinger–Poisson–Proca system in the electro-magneto-static case as the Bopp–Podolsky parameter goes to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, T.: Espaces de Sobolev sur les variétés riemanniennes. Bull. Sci. Math. 100, 149–173 (1976)

    MathSciNet  MATH  Google Scholar 

  2. Azzollini, A., d’Avenia, P., Pomponio, A.: On the Schrödinger–Maxwell equations under the effect of a general nonlinear term. Ann. Inst. H. Poincaré, Anal. Non Linéaire 27, 779–791 (2010)

    Article  MathSciNet  Google Scholar 

  3. Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger–Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283–293 (1998)

    Article  MathSciNet  Google Scholar 

  4. Benci, V., Fortunato, D.: Spinning \(Q\)-balls for the Klein–Gordon–Maxwell equations. Commun. Math. Phys. 295, 639–668 (2010)

    Article  MathSciNet  Google Scholar 

  5. Bopp, F.: Eine Lineare Theorie des Elektrons. Ann. Phys. 430, 345–384 (1940)

    Article  MathSciNet  Google Scholar 

  6. Cuzinatto, R.R., De Morais, E.M., Medeiros, L.G., Naldoni de Souza, C., Pimentel, B.M.: De Broglie–Proca and Bopp–Podolsky massive photon gases in cosmology. EPL 118, 19001 (2017)

    Article  Google Scholar 

  7. d’Avenia, P., Medreski, J., Pomponio, P.: Vortex ground states for Klein–Gordon–Maxwell–Proca type systems. J. Math. Phys. (to appear)

  8. d’Avenia, P., Siciliano, G.: Nonlinear Schrödinger equation in the Bopp–Podolsky electrodynamics: solutions in the electrostatic case. Preprint

  9. Dodziuk, J.: Sobolev spaces of differential forms and de Rham–Hodge isomorphism. J. Differ. Geom. 16, 63–73 (1981)

    Article  MathSciNet  Google Scholar 

  10. Druet, O.: From one bubble to several bubbles: the low-dimensional case. J. Differ. Geom. 63, 399–473 (2003)

    Article  MathSciNet  Google Scholar 

  11. Druet, O.: Compactness for Yamabe metrics in low dimensions. Int. Math. Res. Not. 23, 1143–1191 (2004)

    Article  MathSciNet  Google Scholar 

  12. Figueiredo, G.M., Siciliano, G.: Existence and asymptotic behaviour of solutions for a quasi-linear Schrödinger–Poisson system under a critical nonlinearity. Preprint (2017)

  13. Gidas, B., Spruck, J.: A priori bounds for positive solutions of nonlinear elliptic equations. Commun. Part. Differ. Equ. 6, 883–901 (1981)

    Article  MathSciNet  Google Scholar 

  14. Gilbarg, G., Trüdinger, N.S.: Elliptic partial differential equations of second order, Second edition, Grundlehren der Mathematischen Wissenschaften, 224. Springer, Berlin (1983)

  15. Hebey, E.: Compactness and Stability for Nonlinear Elliptic Equations. Zurich Lectures in Advanced Mathematics. European Mathematical Society, Zurich (2014)

    Book  Google Scholar 

  16. Hebey, E.: Electro-magneto-static study of the nonlinear Schrödinger equation coupled with Bopp-Podolsky electrodynamics in the Proca setting. Discrete Contin. Dyn. Syst. Ser. A 39, 6683–6712 (2019)

    Article  Google Scholar 

  17. Hebey, E., Thizy, P.D.: Klein–Gordon–Maxwell–Proca type systems in the electro-magneto-static case. J. Part. Differ. Equ. 31, 119–58 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Hebey, E., Wei, J.: Schrödinger–Poisson systems in the 3-sphere. Calc. Var. Partial Differ. Equ. 47, 25–54 (2013)

    Article  Google Scholar 

  19. Li, Y.Y., Zhu, M.: Yamabe type equations on three dimensional Riemannian manifolds. Commun. Contemp. Math. 1, 1–50 (1999)

    Article  MathSciNet  Google Scholar 

  20. Marques, F.C.: A priori estimates for the Yamabe problem in the non-locally conformally flat case. J. Differ. Geom. 71, 315–346 (2005)

    Article  MathSciNet  Google Scholar 

  21. Podolsky, B.: A generalized electrodynamics. Phys. Rev. 62, 68–71 (1942)

    Article  MathSciNet  Google Scholar 

  22. Schoen, R.M.: Lecture notes from courses at Stanford, written by D.Pollack. Preprint (1988)

  23. Schoen, R.M., Yau, S.T.: On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65, 45–76 (1979)

    Article  MathSciNet  Google Scholar 

  24. Schrödinger, E.: The Earth’s and the Sun’s permanent magnetic fields in the unitary field theory. Proc. R. Ir. Acad. A 49, 135–148 (1943)

    MathSciNet  MATH  Google Scholar 

  25. Thizy, P.D.: Non-resonant states for Schrödinger–Poisson critical systems in high dimensions. Arch. Math. 104, 485–490 (2015)

    Article  MathSciNet  Google Scholar 

  26. Thizy, P.D.: Schrödinger–Poisson systems in 4-dimensional closed manifolds. Discrete Contin. Dyn. Syst. Ser. A 36, 2257–2284 (2016)

    Article  MathSciNet  Google Scholar 

  27. Thizy, P.D.: Blow-up for Schrödinger–Poisson critical systems in dimensions 4 and 5. Calc. Var. Partial Differ. Equ. 55, 20 (2016)

    Article  MathSciNet  Google Scholar 

  28. Thizy, P.D.: Phase-stability for Schrödinger–Poisson critical systems in closed 5-manifolds. Int. Math. Res. Not. IMRN 20, 6245–6292 (2016)

    Article  MathSciNet  Google Scholar 

  29. Thizy, P.D.: Unstable phases for the critical Schrödinger–Poisson system in dimension 4. Differ. Integral Equa. 30, 825–832 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Witten, E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80, 381–402 (1981)

    Article  MathSciNet  Google Scholar 

  31. Zayats, A.E.: Self-interaction in the Bopp–Podolsky electrodynamics: can the observable mass of a charged particle depend on its acceleration? Ann. Phys. 342, 11–20 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank Michal Wrochna and Vladimir Georgescu for very interesting discussions, comments and very helpful suggestions. The author would also like to thank the referee for his/her constructive suggestions which definitely helped to improve the readability of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Hebey.

Additional information

Communicated by A. Malchiodi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hebey, E. Strong convergence of the Bopp–Podolsky–Schrödinger–Proca system to the Schrödinger–Poisson–Proca system in the electro-magneto-static case. Calc. Var. 59, 198 (2020). https://doi.org/10.1007/s00526-020-01864-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01864-9

Mathematics Subject Classification

Navigation