Skip to main content
Log in

A bio-inspired spatiotemporal contrast operator for small and low-heat-signature target detection in infrared imagery

  • S.I. : DICTA 2019
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Thermal infrared imaging is a promising modality for long-range small target detection. However, low target contrast, high background clutter and sensor noise are some of the key challenges that need to be resolved efficiently for robust detection performance. The spatiotemporal processing in the early stages of the visual pathway of small flying insects has a remarkable ability to simultaneously address such challenges. The first stage of the early visual system corresponds to the adaptive temporal filtering mechanisms of photoreceptor cells. This stage improves the signal-to-noise ratio, enhances target background discrimination and compresses the signal bandwidth. The second stage pertains to the adaptive spatiotemporal filtering in the lamina monopolar cells. This stage removes spatiotemporal redundancy and enhances target contrast. In this paper, we explore such two-stage bio-processing to simultaneously suppress clutter and enhance the contrast of small low-heat-signature targets in real-world infrared imagery. We also propose a simple and efficient spatial contrast operator called center–surround total differential index for target region segmentation. Small moving target detection experiments on real-world high-bit-depth infrared video sequences show that the proposed method significantly outperforms the state-of-the-art spatial and spatiotemporal infrared small target detection methods. Specifically, our method resulted in 59% better detection rate (at 10\(^{-5}\) false alarm rate) than the best competing method. Our results show that the bio-inspired spatiotemporal preprocessing is an excellent tool for significantly improving the performance of existing long-range infrared target detection techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Brinkworth R, Mah E, O’Carroll D (2007) Bio-inspired pixel-wise adaptive imaging. Proc SPIE 6414:6414–6414

    Google Scholar 

  2. Brinkworth R, Mah EL, Gray JP, O’Carroll DC (2008) Photoreceptor processing improves salience facilitating small target detection in cluttered scenes. J Vis 8(11):8–8

    Article  Google Scholar 

  3. Brinkworth R, O’Carroll D (2009) Robust models for optic flow coding in natural scenes inspired by insect biology. PLoS Comput Biol 5(11): e1000,555

  4. Brinkworth R, O’Carroll D (2010) Bio-inspired model for robust motion detection under noisy conditions. In: The 2010 international joint conference on neural networks (IJCNN), IEEE, pp 1–8

  5. Carandini M, Demb JB, Mante V, Tolhurst DJ, Dan Y, Olshausen BA, Gallant JL, Rust NC (2005) Do we know what the early visual system does? J Neurosci 25(46):10577–10597

    Article  Google Scholar 

  6. Chen CP, Li H, Wei Y, Xia T, Tang YY (2014) A local contrast method for small infrared target detection. IEEE Trans Geosci Remote Sens 52(1):574–581

    Article  Google Scholar 

  7. Deng L, Zhu H, Tao C, Wei Y (2016) Infrared moving point target detection based on spatial-temporal local contrast filter. Infrared Phys Technol 76:168–173

    Article  Google Scholar 

  8. Dedrone. https://www.dedrone.com/resources/incidents/all. Accessed 09 Jan 2020

  9. Deshpande S, Er M, Venkateswarlu R, Chan P (1999) Max-mean and max-median filters for detection of small-targets. Proc SPIE 3809:74–83

    Article  Google Scholar 

  10. Ernst U (2015) Center-surround processing, computational role. In: Encyclopedia of computational neuroscience, pp 578–588

  11. Fawcett T (2006) An introduction to roc analysis. Pattern Recognit Lett 27(8):861–874

    Article  MathSciNet  Google Scholar 

  12. Gao C, Meng D, Yang Y, Wang Y, Zhou X, Hauptmann AG (2013) Infrared patch-image model for small target detection in a single image. IEEE Trans Image Process 22(12):4996–5009

    Article  MathSciNet  Google Scholar 

  13. Gao J, Lin Z, An W (2019) Infrared small target detection using a temporal variance and spatial patch contrast filter. IEEE Access 7:32217–32226

    Article  Google Scholar 

  14. Jl G, Cl W, Zj B, Mq L (2016) Detecting slowly moving infrared targets using temporal filtering and association strategy. Front Inf Technol Electron Eng 17(11):1176–1185

    Article  Google Scholar 

  15. Gettinger D, Michel AH (2015) Drone sightings and close encounters: an analysis. Center for the Study of the Drone, Bard College

  16. Han J, Liang K, Zhou B, Zhu X, Zhao J, Zhao L (2018) Infrared small target detection utilizing the multiscale relative local contrast measure. IEEE Geosci Remote Sens Lett 15(4):612–616

    Article  Google Scholar 

  17. Han J, Liu S, Qin G, Zhao Q, Zhang H, Li N (2019) A local contrast method combined with adaptive background estimation for infrared small target detection. IEEE Geo Remote Sens Lett 16(9):1442–1446

    Article  Google Scholar 

  18. Hilliard CI (2000) Selection of a clutter rejection algorithm for real-time target detection from an airborne platform. In: Signal and data processing of small targets, vol 4048, International Society for Optics and Photonics, pp 74–85

  19. Kim S (2015) High-speed incoming infrared target detection by fusion of spatial and temporal detectors. Sensors 15(4):7267–7293

    Article  Google Scholar 

  20. Kim S, Sun SG, Kim KT (2014) Highly efficient supersonic small infrared target detection using temporal contrast filter. Electron Lett 50(2):81–83

    Article  Google Scholar 

  21. Lv P, Sun S, Lin C, Liu G (2019) A method for weak target detection based on human visual contrast mechanism. IEEE Geosci Remote Sens Lett 16(2):261–265

    Article  Google Scholar 

  22. Matić T, Laughlin S (1981) Changes in the intensity-response function of an insect’s photoreceptors due to light adaptation. J Comp Physiol 145(2):169–177

    Article  Google Scholar 

  23. McGill R, Tukey J, Larsen W (1978) Variations of box plots. Am Stat 32(1):12–16

    Google Scholar 

  24. Naka K, Rushton W (1966) S-potentials from luminosity units in the retina of fish (cyprinidae). J Physiol 185(3):587–599

    Article  Google Scholar 

  25. Qi S, Ma J, Tao C, Yang C, Tian J (2013) A robust directional saliency-based method for infrared small-target detection under various complex backgrounds. Geo Remote Sens Lett 10(3):495–499

    Article  Google Scholar 

  26. Qin Y, Bruzzone L, Gao C, Li B (2019) Infrared small target detection based on facet kernel and random walker. IEEE Trans Geosci Remote Sens 57(9):7104–7118

    Article  Google Scholar 

  27. Rohacs J, Jankovics I, Gal I, Bakunowicz J, Mingione G, Carozza A (2019) Small aircraft infrared radiation measurements supporting the engine airframe aero-thermal integration. Period Polytech Transp Eng 47(1):51–63

    Article  Google Scholar 

  28. Silverman J, Caefer CE, DiSalvo S, Vickers VE (1998) Temporal filtering for point target detection in staring ir imagery: Ii. recursive variance filter. In: Signal and data processing of small targets, vol 3373, pp 44–53

  29. Skelton PS, Finn A, Brinkworth RS (2019) Consistent estimation of rotational optical flow in real environments using a biologically-inspired vision algorithm on embedded hardware. Image Vis Comput 92:103814

    Article  Google Scholar 

  30. Slllito AM, Grieve KL, Jones HE, Cudeiro J, Davls J (1995) Visual cortical mechanisms detecting focal orientation discontinuities. Nature 378(6556):492

    Article  Google Scholar 

  31. Tartakovsky AG, Brown J (2008) Adaptive spatial-temporal filtering methods for clutter removal and target tracking. IEEE Trans Aerosp Electron Syst 44(4):1522–1537

    Article  Google Scholar 

  32. Uzair M, Brinkworth R, Finn A (2019) Insect-inspired small moving target enhancement in infrared videos. In: IEEE international conference on digital image computing: techniques and applications (DICTA)

  33. Van Hateren J (1997) Processing of natural time series of intensities by the visual system of the blowfly. Vis Res 37(23):3407–3416

    Article  Google Scholar 

  34. Van Hateren J, Snippe H (2001) Information theoretical evaluation of parametric models of gain control in blowfly photoreceptor cells. Vis Res 41(14):1851–1865

    Article  Google Scholar 

  35. Wang B, Motai Y, Dong L, Xu W (2019) Detecting infrared maritime targets overwhelmed in sun glitters by antijitter spatiotemporal saliency. IEEE Trans Geosci Remote Sens 57:5159–5173

    Article  Google Scholar 

  36. Wang G, Zhang T, Wei L, Sang N (1996) Efficient method for multiscale small target detection from a natural scene. Opt Eng 35:761–768

    Article  Google Scholar 

  37. Wang W, Li C, Shi J (2015) A robust infrared dim target detection method based on template filtering and saliency extraction. Infrared Phys Technol 73:19–28

    Article  Google Scholar 

  38. Wei Y, You X, Li H (2016) Multiscale patch-based contrast measure for small infrared target detection. Pattern Recognit 58:216–226

    Article  Google Scholar 

  39. Wiederman S, Brinkworth R, O’Carroll D et al (2010) Performance of a bio-inspired model for the robust detection of moving targets in high dynamic range natural scenes. J Comput Theor Nanosci 7(5):911–920

    Article  Google Scholar 

  40. Xia C, Li X, Zhao L, Shu R (2019) Infrared small target detection based on multiscale local contrast measure using local energy factor. IEEE Geosci Remote Sens Lett 17:157–161

    Article  Google Scholar 

  41. Zeng M, Li J, Peng Z (2006) The design of top-hat morphological filter and application to infrared target detection. Infrared Phys Technol 48(1):67–76

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Uzair.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uzair, M., SA Brinkworth, R. & Finn, A. A bio-inspired spatiotemporal contrast operator for small and low-heat-signature target detection in infrared imagery. Neural Comput & Applic 33, 7311–7324 (2021). https://doi.org/10.1007/s00521-020-05206-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05206-w

Keywords

Navigation