Skip to main content
Log in

A ten node tetrahedral Cosserat Point Element (CPE) for nonlinear isotropic elastic materials

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

It is known that the standard full integration ten node tetrahedral element is inaccurate for thin nearly incompressible structures. Also, the commercial code ABAQUS recommends replacing this standard element (C3D10) with an undocumented patented modified element (C3D10M) for contact problems. The objective of this work is to develop a ten node tetrahedral Cosserat Point Element (CPE) for nonlinear isotropic hyperelastic materials. Hyperelastic constitutive equations for the CPE are developed by treating the element as a structure with a strain energy function that is restricted to satisfy a nonlinear form of the patch test. A number of examples are considered which demonstrate that the resulting CPE is accurate and robust, it does not exhibit the numerical stiffness for nearly incompressible materials observed for (C3D10) nor the unphysical instabilities observed for (C3D10M). Moreover, the CPE can be used for thin structures and three-dimensional bodies with a smooth transition from compressible to nearly incompressible material behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boerner EFI, Loehnert S, Wriggers P (2007) A new finite element based on the theory of a Cosserat point—extension to initially distorted elements for 2D plane strain. Int J Numer Methods Eng 71: 454–472

    Article  MathSciNet  MATH  Google Scholar 

  2. Borouchaki H, George PL (1996) Optimal Delaunay point insertion. Int J Numer Methods Eng 39: 3407–3437

    Article  MathSciNet  MATH  Google Scholar 

  3. Cervera M, Chiumenti M, Valverde Q, Agelet de Saracibar C (2003) Mixed linear/linear simplicial elements for incompressible elasticity and plasticity. Comput Methods Appl Mech Eng 192: 5249–5263

    Article  MATH  Google Scholar 

  4. Chiumenti M, Valverde Q, Agelet de Saracibar C, Cervera M (2002) A stabilized formulation for incompressible elasticity using linear displacement and pressure interpolations. Comput Methods Appl Mech Eng 191: 5253–5264

    Article  MathSciNet  MATH  Google Scholar 

  5. Cisloiu R, Lovell M, Wang J (2008) A stabilized mixed formulation for finite strain deformation for low-order tetrahedral solid elements. Finite Elements Anal Des 44: 472–482

    Article  Google Scholar 

  6. Duster A, Hartmann S, Rank E (2003) p-FEM applied to finite isotropic hyperelastic bodies. Comput Methods Appl Mech Eng 192: 5147–5166

    Article  Google Scholar 

  7. Flory P (1961) Thermodynamic relations for high elastic materials. Trans Faraday Soc 57: 829–838

    Article  MathSciNet  Google Scholar 

  8. Green AE, Adkins JE (1960) Large elastic deformations and nonlinear continuum mechanics. Oxford University Press, London

    Google Scholar 

  9. Heisserer U, Hartmann S, Duster A, Yosibash Z (2008) On volumetric locking-free behavior of p-version finite elements under finite deformations. Commun Numer Methods Eng 24: 1019–1032

    Article  MathSciNet  MATH  Google Scholar 

  10. Jabareen M, Rubin MB (2007) Hyperelasticity and physical shear buckling of a block predicted by the Cosserat point element compared with inelasticity and hourglassing predicted by other element formulations. Comput Mech 40: 447–459

    Article  MathSciNet  MATH  Google Scholar 

  11. Jabareen M, Rubin MB (2007) An improved 3-D Cosserat brick element for irregular shaped elements. Comput Mech 40: 979–1004

    Article  MathSciNet  MATH  Google Scholar 

  12. Jabareen M, Rubin MB (2008) A generalized Cosserat point element (CPE) for isotropic nonlinear elastic materials including irregular 3-D brick and thin structures. J Mech Mater Struct 3: 1465–1498

    Article  Google Scholar 

  13. Jabareen M, Rubin MB (2012) A six node plane strain triangular Cosserat Point Element (CPE) for nonlinear elasticity (submitted).

  14. Klaas O, Maniatty A, Shephard MS (1999) A stabilized mixed finite element method for finite elasticity. Formulation for linear displacement and pressure interpolation. Comput Methods Appl Mech Eng 180: 65–79

    Article  MATH  Google Scholar 

  15. Klepach D, Rubin MB (2007) Postbuckling response and ultimate strength of a rectangular elastic plate using a 3-D Cosserat brick element. Eur J Mech A/Solids 26: 348–362

    Article  MATH  Google Scholar 

  16. Lee CK, Lo SH (1997) Automatic adaptive 3-D finite element refinement using different-order tetrahedral elements. Int J Numer Methods Eng 40: 2195–2226

    Article  MATH  Google Scholar 

  17. Lo SH (1997) Optimization of tetrahedral meshes based on element shape measures. Comput Struct 63: 951–961

    Article  MATH  Google Scholar 

  18. Lo SH, Ling C (2000) Improvement on the 10-node tetrahedral element for three-dimensional problems. Comput Commun Numer Methods Eng 189: 961–974

    MATH  Google Scholar 

  19. Loehnert S, Boerner EFI, Rubin MB, Wriggers P (2005) Response of a nonlinear elastic general Cosserat brick element in simulations typically exhibiting locking and hourglassing. Comput Mech 36: 255–265

    Article  MATH  Google Scholar 

  20. Nadler B, Rubin MB (2003) A new 3-D finite element for nonlinear elasticity using the theory of a Cosserat point. Int J Solids Struct 40: 4585–4614

    Article  MATH  Google Scholar 

  21. Onate E, Rojek J, Taylor RL, Zienkiewicz OC (2004) Finite calculus formulation for incompressible solids using linear triangles and tetrahedra. Int J Numer Methods Eng 59: 1473–1500

    Article  MathSciNet  MATH  Google Scholar 

  22. Rubin MB (1985) On the theory of a Cosserat point and its application to the numerical solution of continuum problems. ASME J Appl Mech 52: 368–372

    Article  MATH  Google Scholar 

  23. Rubin MB (1985) On the numerical solution of one-dimensional continuum problems using the theory of a Cosserat point. ASME J Appl Mech 52: 373–378

    Article  MATH  Google Scholar 

  24. Rubin MB (1995) Numerical solution of two- and three-dimensional thermomechanical problems using the theory of a Cosserat point. J. Math. Phys ZAMP 46, Special Issue S308-S334. In: Casey J, Crochet MJ (eds) Theoretical, experimental, and numerical contributions to the mechanics of fluids and solids, Birkhauser Verlag, Basel

  25. Rubin MB (2000) Cosserat theories: shells, rods and points, solid mechanics and its applications, vol. 79. Kluwer, The Netherlands

    Book  Google Scholar 

  26. Shiakolas PS, Nambiar RV, Lawrence KL, Rogers WA (1992) Closed-form stiffness matrices for the linear strain and quadratic strain tetrahedron finite element. Comput Struct 45: 237–242

    Article  MATH  Google Scholar 

  27. Shiakolas PS, Lawrence KL, Nambiar RV (1994) Closed-form expressions for the linear and quadratic strain tetrahedral finite elements. Comput Struct 50: 743–747

    Article  Google Scholar 

  28. Sokolnikoff IS (1956) Mathematical theory of elasticity. McGraw-Hill, New York

    MATH  Google Scholar 

  29. Suri M (1996) Analytical and computational assessment of locking in the hp finite element method. Comput Methods Appl Mech Eng 133: 347–371

    Article  MathSciNet  MATH  Google Scholar 

  30. Taylor RL (2000) A mixed-enhanced formulation for tetrahedral finite elements. Int J Numer Methods Eng 47: 205–227

    Article  MATH  Google Scholar 

  31. Vogelius M (1983) An analysis of the p-version of the finite element method for nearly incompressible materials. Uniformly valid, optimal order error estimates. Numer Math 41: 39–53

    Article  MathSciNet  MATH  Google Scholar 

  32. Yosibash Z, Hartmann S, Heisserer U, Duster A, Rank E, Szanto M (2007) Axisymmetric pressure boundary loading for finite deformation analysis using p-FEM. Comput Methods Appl Mech Eng 196: 1261–1277

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Rubin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jabareen, M., Hanukah, E. & Rubin, M.B. A ten node tetrahedral Cosserat Point Element (CPE) for nonlinear isotropic elastic materials. Comput Mech 52, 257–285 (2013). https://doi.org/10.1007/s00466-012-0811-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0811-x

Keywords

Navigation