Skip to main content
Log in

LLM and X-FEM based interface modeling of fluid–thin structure interactions on a non-interface-fitted mesh

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a non-interface-fitted mesh method for fluid–thin structure interactions. The key components are the Lagrangian Lagrange-multiplier (LLM) method and the extended finite element method (X-FEM). The LLM couples fluid and thin structure through the Lagrangian nodes of the structure element. The X-FEM gives flow discontinuity to the fluid elements intersected by the structure element. The combination method is verified through applications to flow with a domain-partitioning boundary and flow-induced flapping of a flexible filament. We discuss how the discontinuities at the interface enhance the simulation results, how the lack of the discontinuities affects the results, and identify some effects of these discontinuity enrichments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peskin CS (1972) Flow patterns around heart valves: a numerical method. J Comput Phys 10: 252–271

    Article  MathSciNet  MATH  Google Scholar 

  2. Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29: 329–349

    Article  MathSciNet  MATH  Google Scholar 

  3. Belytschko T, Flanagan DP (1982) Finite element method with user-controlled meshes for fluid–structure interactions. Comput Methods Appl Mech Eng 33: 689–723

    Article  Google Scholar 

  4. Huerta A, Liu WK (1988) Viscous flow with large free surface motion. Comput Methods Appl Mech Eng 69: 277–324

    Article  MATH  Google Scholar 

  5. Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94: 339–351

    Article  MathSciNet  MATH  Google Scholar 

  6. Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: II. Computations of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94: 353–371

    Article  MathSciNet  MATH  Google Scholar 

  7. Nitikitpaiboon C, Bathe KJ (1993) An arbitrary Lagrangian–Eulerian velocity potential formulation for fluid–structure interaction. Comput Struct 47(4): 871–891

    Article  MATH  Google Scholar 

  8. Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119: 73–94

    Article  MATH  Google Scholar 

  9. Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows—fluid–structure interactions. Int J Numer Methods Fluids 21: 933–953

    Article  MATH  Google Scholar 

  10. Li Z (1997) Immersed interface methods for moving interface problems. Numer Algorithm 14(4): 269–293

    Article  MATH  Google Scholar 

  11. Glowinski R, Pan TW, Périaux J (1998) Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies. Comput Methods Appl Mech Eng 151: 181–194

    Article  MATH  Google Scholar 

  12. Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid–structure interactions in parachute systems. Comput Methods Appl Mech Eng 190: 321–332

    Article  MATH  Google Scholar 

  13. Wagner GJ, Moës N, Liu WK, Belytschko T (2001) The extended finite element method for rigid particles in Stokes flow. Int J Numer Methods Eng 51: 293–313

    Article  MATH  Google Scholar 

  14. Zhang Q, Hisada T (2001) Analysis of fluid–structure interaction problems with structural buckling and large domain changes by ALE finite element method. Comput Methods Appl Mech Eng 190: 6341–6357

    Article  MATH  Google Scholar 

  15. Tezduyar T, Osawa Y (2001) The multi-domain method for computation of the aerodynamics of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191: 705–716

    Article  MATH  Google Scholar 

  16. Tezduyar T, Osawa Y (2001) Fluid–structure interactions of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191: 717–726

    Article  MATH  Google Scholar 

  17. Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Meth Eng 8: 83–130

    Article  MATH  Google Scholar 

  18. Zhu L, Peskin CS (2002) Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method. J Comput Phys 179: 452–468

    Article  MathSciNet  MATH  Google Scholar 

  19. Boffi D, Gastaldi L (2003) A finite element approach to the immersed boundary method. Comput Struct 81: 491–501

    Article  MathSciNet  Google Scholar 

  20. Kuhl E, Hulshoff S, Borst DR (2003) An arbitrary Lagrangian Eulerian finite-element approach for fluid–structure interaction phenomena. Int J Numer Methods Eng 57: 117–142

    Article  MATH  Google Scholar 

  21. Zhang L, Gerstenberger A, Wang X, Liu WK (2004) Immersed finite element method. Comput Methods Appl Mech Eng 193: 2051–2067

    Article  MathSciNet  MATH  Google Scholar 

  22. Loon RV, Anderson PD, Hart DJ, Baaijens FPT (2004) A combined fictitious domain/adaptive meshing method for fluid–structure interaction in heart valves. Int J Numer Methods Fluids 46: 533–544

    Article  MATH  Google Scholar 

  23. Watanabe H, Sugiura S, Hisada T (2004) Multiphysics simulation of left ventricular filling dynamics using fluid–structure interaction finite element method. Biophys J 87(3): 2074–2085

    Article  Google Scholar 

  24. Yu Z (2005) A DLM/FD method for fluid/flexible–body interactions. J Comput Phys 207(1): 1–27

    Article  MATH  Google Scholar 

  25. Cirak F, Radovitzky R (2005) A Lagrangian–Eulerian shell-fluid coupling algorithm base on level sets. Comput Struct 85: 491–498

    Article  Google Scholar 

  26. Sawada T, Hisada T (2005) Overlaying ALE mesh approach to computation of fluid–structure interactions. Proc 5th International Conference on Computer Shell Spatial Structure, T-2-B(3):1–4, Salzburg, Austria, Jun 1–4

  27. Legay A, Chessa J, Belytschko T (2006) An Eulerian–Lagrangian method for fluid–structure interaction based on level sets. Comput Methods Appl Mech Eng 195: 2070–2087

    Article  MathSciNet  MATH  Google Scholar 

  28. Legay A, Kölke A (2006) An enriched space-time finite element method for fluid–structure interaction—Part I: prescribed structural displacement. Proceedings III ECCM, Solid Struct Coupling Prob Eng, Lisbon Portugal, 5–8 Jun 2006

  29. Kölke A, Legay A (2006) An enriched space-time finite element method for fluid–structure interaction—Part II: thin flexible structures. Proceedings III ECCM, Solid Struct Coupling Prob Eng, Lisbon Portugal, 5–8 Jun 2006

  30. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the deforming-spatial-domain/stabilized space-time formulation. Comput Methods Appl Mech Eng 195: 1885–1895

    Article  MathSciNet  MATH  Google Scholar 

  31. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech 38: 482–490

    Article  MATH  Google Scholar 

  32. Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195: 2002–2027

    Article  MathSciNet  MATH  Google Scholar 

  33. Tezduyar TE (2006) Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces. Comput Methods Appl Mech Eng 195: 2983–3000

    Article  MathSciNet  MATH  Google Scholar 

  34. Sawada T, Tezuka A, Hisada T (2007) Extended finite element method for the fluid–structure interaction problems based on discontinuous interpolations on level set interfaces. Proceedings of APCOM’07-EPMESC XI, MS20-3(2):1–10, Kyoto Japan, 3–6 Dec 2007

  35. Takizawa K, Yabe T, Tsugawa Y, Tezduyar TE, Mizoe H (2007) Computation of free-surface flows and fluid–object interactions with the CIP method based on adaptive meshless Soroban grids. Comput Mech 40: 167–183

    Article  MATH  Google Scholar 

  36. Yabe T, Takizawa K, Tezduyar TE, Im H-N (2007) Computation of fluid-solid and fluid-fluid interfaces with the CIP method based on adaptive Soroban grids—an overview. Int J Numer Methods Fluids 54: 841–853

    Article  MathSciNet  MATH  Google Scholar 

  37. Takizawa K, Tanizawa K, Yabe T, Tezduyar TE (2007) Ship hydrodynamics computations with the CIP method based on adaptive Soroban grids. Int J Numer Methods Fluids 54: 1011–1019

    Article  MATH  Google Scholar 

  38. Sawada T, Hisada T (2007) Fluid–structure interaction analysis of the two-dimensional flag-in-wind problem by an interface-tracking ALE finite element method. Comput Fluids 36: 136–146

    Article  MATH  Google Scholar 

  39. Sawada T, Tezuka A, Hisada T (2007) Overlaying mesh method for large deformation fluid-shell interaction analysis using interface-tracking ALE local mesh and immersed boundary global mesh. Trans JSCES 20070029: 1–10 (in Japanese Language)

    Google Scholar 

  40. Akin JE, Tezduyar TE, Ungor M (2007) Computation of flow problems with the mixed interface-tracking/interface-capturing technique (MITICT). Comput Fluids 36: 2–11

    Article  MATH  Google Scholar 

  41. Cruchaga MA, Celentano DJ, Tezduyar TE (2007) A numerical model based on the mixed interface-tracking/interface-capturing technique (MITICT) for flows with fluid–solid and fluid–fluid interfaces. Int J Numer Meth Fluids 54: 1021–1030

    Article  MATH  Google Scholar 

  42. Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54: 855–900

    Article  MathSciNet  MATH  Google Scholar 

  43. Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid–structure interactions with the space-time finite elements: arterial fluid mechanics. Int J Numer Methods Fluids 54: 901–922

    Article  MathSciNet  MATH  Google Scholar 

  44. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Influence of wall elasticity in patient-specific hemodynamic simulations. Comput Fluids 36: 160–168

    Article  MATH  Google Scholar 

  45. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—dependence of the effect on the aneurysm shape. Int J Numer Methods Fluids 54: 995–1009

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang H, Chessa J, Liu WK, Belytschko T (2008) The immersed/fictitious element method for fluid–structure interaction: volumetric consistency, compressibility and thin members. Int J Numer Methods Eng 74: 32–55

    Article  MathSciNet  MATH  Google Scholar 

  47. Zilian A, Legay A (2008) The enriched space-time finite element method (EST) for simultaneous solution of fluid–structure interaction. Int J Numer Methods Eng 75: 305–334

    Article  MathSciNet  MATH  Google Scholar 

  48. Gerstenberger A, Wall WA (2008) An extended finite element method/Lagrange multiplier based approach for fluid–structure interaction. Comput Methods Appl Mech Eng 197: 1699–1714

    Article  MathSciNet  MATH  Google Scholar 

  49. Sawada T, Tezuka A, Hisada T (2008) Performance comparison between the fluid-shell coupled overlaying mesh method and the immersed boundary method. Trans JSCES 20080005: 1–14 (in Japanese Language)

    Google Scholar 

  50. Sathe S, Tezduyar TE (2008) Modeling of fluid–structure interactions with the space-time finite elements: contact problems. Comput Mech 43: 51–60

    Article  MathSciNet  MATH  Google Scholar 

  51. Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech 43: 39–49

    Article  MATH  Google Scholar 

  52. Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Fluid–structure interaction modeling of ringsail parachutes. Comput Mech 43: 133–142

    Article  MATH  Google Scholar 

  53. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput Mech 43: 151–159

    Article  MATH  Google Scholar 

  54. Mayer UM, Gerstenberger A, Wall WA (2009) Interface handling for three-dimensional higher-order XFEM-computations in fluid–structure interaction. Int J Numer Methods Eng 79: 846–869

    Article  MATH  Google Scholar 

  55. Sawada T, Nakasumi S, Tezuka A, Fukushima M, Yoshizawa Y (2009) Extended-FEM for the solid-fluid mixture two-scale problems with BCC and FCC microstructures. Interact Multiscale Mech Int J 2(1): 45–68

    Google Scholar 

  56. Wang H, Belytschko T (2009) Fluid–structure interaction by the discontinuous-Galerkin method for large deformations. Int J Numer Methods Eng 77: 30–49

    Article  MathSciNet  MATH  Google Scholar 

  57. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2009) Fluid–structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes. Comput Methods Appl Mech Eng 198: 3613–3621

    Article  MathSciNet  MATH  Google Scholar 

  58. Gerstenberger A, Wall WA (2010) An embedded Dirichlet formulation for 3D continua. Int J Numer Methods Eng 82: 537–563

    MathSciNet  MATH  Google Scholar 

  59. Mayer UM, Popp A, Gerstenberger A, Wall WA (2010) 3D fluid–structure-contact interaction based on a combined XFEM FSI and dual mortar contact approach. Comput Struct 46: 53–67

    MathSciNet  MATH  Google Scholar 

  60. Sawada T, Tezuka A (2010) High-order Gaussian quadrature in X-FEM with the Lagrange-multiplier for fluid-structure coupling. Int J Numer Methods Fluids 64: 1219–1239

    Article  MathSciNet  MATH  Google Scholar 

  61. Nakamoto H, Sawada T, Hattori S, Tezuka A (2010) Advanced simulation technology for innovating air-assisted paper-feed mechanism. Toshiba Review 65(8): 35–39 (in Japanese Language)

    Google Scholar 

  62. Hashimoto G, Ono K (2010) Interface treatment under no-slip conditions using level-set virtual particles for fluid–structure interaction. Theor Appl Mech 58: 325–342

    Google Scholar 

  63. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms. Int J Numer Methods Biomed Eng 26: 336–347

    Article  MathSciNet  MATH  Google Scholar 

  64. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms. Comput Mech 46: 43–52

    Article  MATH  Google Scholar 

  65. Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Space-time finite element computation of arterial fluid–structure interactions with patient-specific data. Int J Numer Methods Biomed Eng 26: 101–116

    Article  MATH  Google Scholar 

  66. Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially coupled arterial FSI technique. Comput Mech 46: 17–29

    Article  MathSciNet  MATH  Google Scholar 

  67. Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010) Wall shear stress calculations in space-time finite element computation of arterial fluid–structure interactions. Comput Mech 46: 31–41

    Article  MathSciNet  MATH  Google Scholar 

  68. Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space-time finite element computation of complex fluid–structure interactions. Int J Numer Methods Fluids 64: 1201–1218

    Article  MATH  Google Scholar 

  69. Takizawa K, Moorman C, Wright S, Spielman T, Tezduyar TE (2011) Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes. Int J Numer Methods Fluids 65: 271–285

    Article  MATH  Google Scholar 

  70. Takizawa K, Wright S, Moorman C, Tezduyar TE (2011) Fluid–structure interaction modeling of parachute clusters. Int J Numer Methods Fluids 65: 286–307

    Article  MATH  Google Scholar 

  71. Takizawa K, Moorman C, Wright S, Purdue J, McPhail T, Chen PR, Warren J, Tezduyar TE (2011) Patient-specific arterial fluid–structure interaction modeling of cerebral aneurysms. Int J Numer Methods Fluids 65: 308–323

    Article  MATH  Google Scholar 

  72. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2011) Influencing factors in image-based fluid–structure interaction computation of cerebral aneurysms. Int J Numer Methods Fluids 65: 324–340

    Article  MATH  Google Scholar 

  73. Takizawa K, Tezduyar TE (2011) Multiscale space-time fluid–structure interaction techniques. Comput Mech. doi:10.1007/s00466-011-0571-z (published online)

  74. Barbosa HJC, Hughes TJR (1991) The finite element method with Lagrange multipliers on the boundary: Circumventing the Babuska-Brezzi condition. Comput Methods Appl Mech Eng 85(1): 109–128

    Article  MathSciNet  MATH  Google Scholar 

  75. Fernández-Méndez S, Huerta A (2004) Imposing essential boundary conditions in mesh-free methods. Comput Methods Appl Mech Eng 193(12-14): 1257–1275

    Article  MATH  Google Scholar 

  76. Moës N, Béchet E, Tourbier M (2006) Imposing Dirichlet boundary conditions in the extended finite element method. Int J Numer Meth Eng 67(12): 1641–1669

    Article  MATH  Google Scholar 

  77. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Meth Eng 46(1): 131–150

    Article  MATH  Google Scholar 

  78. Belytschko T, Moës N, Usui S, Parimi C (2001) Arbitrary discontinuities in finite elements. Int J Numer Meth Eng 50(4): 993–1013

    Article  MATH  Google Scholar 

  79. Sukumar N, Chopp DL, Moës N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite-element method. Comput Methods Appl Mech Eng 190: 6183–6200

    Article  MATH  Google Scholar 

  80. Chessa J, Belytschko T (2003) An enriched finite element method and level sets for axisymmetric two-phase flow with surface tension. Int J Numer Meth Eng 58: 2041–2064

    Article  MathSciNet  MATH  Google Scholar 

  81. Chessa J, Belytschko T (2004) Arbitrary discontinuities in space-time finite elements by level sets and X-FEM. Int J Numer Methods Eng 61: 2595–2614

    Article  MathSciNet  MATH  Google Scholar 

  82. Singh RK, Kant T, Kakodkar A (1991) Coupled shell–fluid interaction problems with degenerate shell and three-dimensional fluid elements. Comput Struct 38(5): 515–528

    Article  MATH  Google Scholar 

  83. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32: 199–259

    Article  MathSciNet  MATH  Google Scholar 

  84. Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity–pressure elements. Comput Methods Appl Mech Eng 95: 221–242

    Article  MATH  Google Scholar 

  85. Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28: 1–44

    Article  MathSciNet  MATH  Google Scholar 

  86. Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190: 411–430

    Article  MATH  Google Scholar 

  87. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43: 555–575

    Article  MathSciNet  MATH  Google Scholar 

  88. Hsu MC, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199: 828–840

    Article  MathSciNet  MATH  Google Scholar 

  89. Ventura G, Gracie R, Belytschko T (2009) Fast integration and weight function blending in the extended finite element method. Int J Numer Meth Eng 77(1): 1–29

    Article  MathSciNet  MATH  Google Scholar 

  90. Mousavi SE, Sukumar N (2010) Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons. Comput Mech. doi:10.1007/s00466-010-0562-5 (published online)

  91. Dvorkin EN, Bathe KJ (1984) A continuum mechanics based four-node shell element for general nonlinear analysis. Eng Comput 1: 77–88

    Article  Google Scholar 

  92. Dvorkin EN (1988) On a non-linear formulation for curved Timoshenko beam elements considering large displacement/rotation increments. Int J Numer Methods Eng 26: 1597–1613

    Article  MATH  Google Scholar 

  93. Parisch H (1991) An investigation of a finite rotation four node assumed strain shell element. Int J Numer Methods Eng 31: 127–150

    Article  MATH  Google Scholar 

  94. Flemisch B, Wohlmuth BI (2007) Stable Lagrange multipliers for quadrilateral meshes of curved interfaces in 3D. Comput Methods Appl Mech Eng 196(8): 1589–1602

    Article  MathSciNet  MATH  Google Scholar 

  95. Cho JY, Song YM, Choi YH (2008) Boundary locking induced by penalty enforcement of essential boundary conditions in mesh-free methods. Comput Methods Appl Mech Eng 197(13–16): 167–1183

    MathSciNet  Google Scholar 

  96. Newmark NM (1959) A method of computation for structural dynamics. J Engng Mech Div, Proc ASCE 85(EM3): 67–94

    Google Scholar 

  97. Saad Y, Schultz MH (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7: 856–869

    Article  MathSciNet  MATH  Google Scholar 

  98. Zhang J, Childress S, Libchaber A, Shelley M (2000) Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind. Nature 408: 835–839

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Sawada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawada, T., Tezuka, A. LLM and X-FEM based interface modeling of fluid–thin structure interactions on a non-interface-fitted mesh. Comput Mech 48, 319–332 (2011). https://doi.org/10.1007/s00466-011-0600-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-011-0600-y

Keywords

Navigation