Skip to main content
Log in

Application of the continuum shell finite element SHB8PS to sheet forming simulation using an extended large strain anisotropic elastic–plastic formulation

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper proposes an extension of the SHB8PS solid–shell finite element to large strain anisotropic elasto-plasticity, with application to several non-linear benchmark tests including sheet metal forming simulations. This hexahedral linear element has an arbitrary number of integration points distributed along a single line, defining the “thickness” direction; and to control the hourglass modes inherent to this reduced integration, a physical stabilization technique is used. In addition, the assumed strain method is adopted for the elimination of locking. The implementation of the element in Abaqus/Standard via the UEL user subroutine has been assessed through a variety of benchmark problems involving geometric non-linearities, anisotropic plasticity, large deformation and contact. Initially designed for the efficient simulation of elastic–plastic thin structures, the SHB8PS exhibits interesting potentialities for sheet metal forming applications—both in terms of efficiency and accuracy. The element shows good performance on the selected tests, including springback and earing predictions for Numisheet benchmark problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abed-Meraim F., Combescure A.: SHB8PS-a new adaptive, assumed-strain continuum mechanics shell element for impact analysis. Comput. Struct. 80, 791–803 (2002)

    Article  Google Scholar 

  2. Abed-Meraim F., Combescure A.: An improved assumed strain solid–shell element formulation with physical stabilization for geometric non-linear applications and elastic–plastic stability analysis. Int. J. Numer. Methods Eng. 80(13), 1640–1686 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alves de Sousa R., Cardoso R., Fontes Valente R., Yoon J., Grácio J., Natal Jorge R.: A new one-point quadrature enhanced assumed strain (EAS) solid–shell element with multiple integration points along thickness: part I - geometrically linear applications. Int. J. Numer. Methods Eng. 62, 952–977 (2005)

    Article  MATH  Google Scholar 

  4. Alves de Sousa R., Cardoso R., Fontes Valente R., Yoon J., Grácio J., Natal Jorge R.: A new one-point quadrature enhanced assumed strain (EAS) solid–shell element with multiple integration points along thickness: part II—nonlinear applications. Int. J. Numer. Methods Eng. 67, 160–188 (2006)

    Article  MATH  Google Scholar 

  5. Alves de Sousa R., Yoon J., Cardoso R., Fontes Valente R., Grácio J.: On the use of a reduced enhanced solid–shell (RESS) element for sheet forming simulations. Int. J. Plast. 23, 490–515 (2007)

    Article  MATH  Google Scholar 

  6. Alves de Sousa R., Correia J., Simões F., Ferreira J., Cardoso R., Grácio J., Barlat F.: Unconstrained springback behavior of Al-Mg-Si sheets for different sitting times. Int. J. Mech. Sci. 50(9), 1381–1389 (2008)

    Article  Google Scholar 

  7. Areias P., César de Sá J., Conceição António C., Fernandes A.: Analysis of 3D problems using a new enhanced strain hexahedral element. Int. J. Numer. Methods Eng. 58, 1637–1682 (2003)

    Article  MATH  Google Scholar 

  8. Belytschko T., Bindeman L.: Assumed strain stabilization of the eight node hexahedral element. Comput. Methods Appl. Mech. Eng. 105, 225–260 (1993)

    Article  MATH  Google Scholar 

  9. Bui Q., Papeleux L., Ponthot J.: Numerical simulation of springback using enhanced assumed strain elements. J. Mater. Process. Technol. 153-154, 314–318 (2004)

    Article  Google Scholar 

  10. Cardoso R., Yoon J., Valente R.: Enhanced one-point quadrature shell element for nonlinear applications. Int. J. Numer. Methods Eng. 69, 627–663 (2007)

    Article  MATH  Google Scholar 

  11. Cardoso R., Yoon J., Mahardika M., Choudhry S., Alves de Sousa R., Fontes Valente R.: Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods for one-point quadrature solid–shell elements. Int. J. Numer. Methods Eng. 75, 156–187 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cho C., Park H., Lee S.: Stability analysis using a geometrically nonlinear assumed strain solid–shell element model. Finite Elem. Anal. Des. 29, 121–135 (1998)

    Article  MATH  Google Scholar 

  13. Domissy, E.: Formulation et évaluation d’éléments finis volumiques modifiés pour l’analyse linéaire et nonlinéaire des coques. PhD thesis, Université de Technologie de Compiègne, France (1997)

  14. Eberlein R., Wriggers P.: Finite element concepts for finite elastoplastic strains and isotropic stress response in shells: theoretical and computational analysis. Comput. Methods Appl. Mech. Eng. 171, 243–279 (1999)

    Article  MATH  Google Scholar 

  15. Eriksson A., Pacoste C., Zdunek A.: Numerical analysis of complex instability behaviour using incremental-iterative strategies. Comput. Methods Appl. Mech. Eng. 179, 265–305 (1999)

    Article  MATH  Google Scholar 

  16. Fish J., Belytschko T.: Elements with embedded localization zones for large deformation problems. Comput. Struct. 30, 247–256 (1988)

    Article  MATH  Google Scholar 

  17. Fontes Valente R., Alves de Sousa R., Natal Jorge R.: An enhanced strain 3D element for large deformation elastoplastic thin-shell applications. Comput. Mech. 48, 38–52 (2004)

    Google Scholar 

  18. Haddag B., Balan T., Abed-Meraim F.: Investigation of advanced strain-path dependent material models for sheet metal forming simulations. Int. J. Plast. 23, 951–979 (2007)

    Article  MATH  Google Scholar 

  19. Haddag B., Abed-Meraim F., Balan T.: Strain localization analysis using a large deformation anisotropic elastic–plastic model coupled with damage. Int. J. Plast. 25, 1970–1996 (2009)

    Article  Google Scholar 

  20. Hauptmann R., Schweizerhof K.: A systematic development of solid–shell element formulations for linear and non-linear analyses employing only displacement degrees of freedom. Int. J. Numer. Methods Eng. 42, 49–69 (1998)

    Article  MATH  Google Scholar 

  21. Hill R.: The Mathematical Theory of Plasticity. Oxford Univesity Press, Oxford (1950)

    MATH  Google Scholar 

  22. Hughes T.: Generalization of selective integration procedures to anisotropic and nonlinear media. Int. J. Numer. Methods Eng. 15, 1413–1418 (1980)

    Article  MATH  Google Scholar 

  23. Hughes T., Winget J.: Finite rotation effects in numerical integration of rate constitutive equation arising in large deformation analysis. Int. J. Numer. Methods Eng. 15, 1862–1867 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hughes T., Cohen M., Haroun M.: Reduced and selective integration techniques in finite element analysis of plates. Nucl. Eng. Des. 46, 203–222 (1978)

    Article  Google Scholar 

  25. Kim K., Liu G., Han S.: A resultant 8-node solid–shell element for geometrically nonlinear analysis. Comput. Mech. 35, 315–331 (2005)

    Article  MATH  Google Scholar 

  26. Klinkel S., Gruttmann F., Wagner W.: A robust non-linear solid–shell element based on a mixed variational formulation. Comput. Methods Appl. Mech. Eng. 195, 179–201 (2006)

    Article  MATH  Google Scholar 

  27. Leahu-Aluas I., Abed-Meraim F.: A proposed set of popular limit-point buckling benchmark problems. Struct. Eng. Mech. 38, 767–802 (2011)

    Google Scholar 

  28. Legay A., Combescure A.: Elastoplastic stability analysis of shells using the physically stabilized finite element SHB8PS. Int. J. Numer. Methods Eng. 57, 1299–1322 (2003)

    Article  MATH  Google Scholar 

  29. Meinders, T., Konter, A., Meijers, S., Atzema, E., Kappert, H.: A sensitivity analysis on the springback behavior of the unconstrained bending problem. In: NUMISHEET 2005, 6th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, Detroit, Michigan, USA (2005)

  30. Meinders T., Konter A., Meijers S., Atzema E., Kappert H.: A sensitivity analysis on the springback behavior of the unconstrained bending problem. Int. J. Form. Process. 9(3), 365–402 (2006)

    Article  Google Scholar 

  31. Miehe C.: A theoretical and computational model for isotropic elastoplastic stress analysis in shells at large strains. Comput. Methods Appl. Mech. Eng. 155, 193–233 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Numisheet 2002 Organization Commitee (2002) In: Proceedings of the Fifth International Conference and Workshop on Numerical Simulation of 3D Sheet Forming Processes, Jeju Island, Korea

  33. Rabahallah M., Balan T., Bouvier S., Teodosiu C.: Time integration scheme for the finite element implementation of elasto-plastic models based on anisotropic strain-rate potentials. Int. J. Numer. Methods Eng. 80, 381–402 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Reese S.: On the equivalence of mixed element formulations and the concept of reduced integration in large deformation problems. Int. J. Nonlinear Sci. Numer. Simul. 3, 1–33 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Reese S.: On a physically stabilized one point finite element formulation for three-dimensional finite elastoplasticity. Comput. Methods Appl. Mech. Eng. 194, 4685–4715 (2005)

    Article  MATH  Google Scholar 

  36. Reese S.: A large deformation solid–shell concept based on reduced integration with hourglass stabilization. Int. J. Numer. Methods Eng. 69, 1671–1716 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Reese S., Wriggers P.: A stabilization technique to avoid hourglassing in finite elasticity. Int. J. Numer. Methods Eng. 48, 79–109 (2000)

    Article  MATH  Google Scholar 

  38. Reese S., Kussner M., Reddy B.: A new stabilization technique for finite element in non-linear elasticity. Int. J. Numer. Methods Eng. 44, 1617–1652 (1998)

    Article  MathSciNet  Google Scholar 

  39. Schwarze M., Reese S.: A reduced integration solid–shell finite element based on the EAS and the ANS concept—geometrically linear problems. Int. J. Numer. Methods Eng. 80, 1322–1355 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Schwarze M., Reese S.: A reduced integration solid–shell finite element based on the EAS and the ANS concept—large deformation problems. Int. J. Numer. Methods Eng. 85, 289–329 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Schwarze M., Vladimirov I.N., Reese S.: Sheet metal forming and springback simulation by means of a new reduced integration solid–shell finite element technology. Comput. Methods Appl. Mech. Eng. 200, 454–476 (2011)

    Article  MATH  Google Scholar 

  42. Simo J., Hughes T.: On the variational foundations of assumed strain methods. J. Appl. Mech. (ASME) 53, 51–54 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  43. Simo J., Kennedy J.: On a stress resultant geometrically exact shell model: Part V—Nonlinear plasticity: formulation and integration algorithms. Comput. Methods Appl. Mech. Eng. 96, 133–171 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  44. Simo J., Rifai M.: A class of mixed assumed strain methods and the method of incompatible modes. Int. J. Numer. Methods Eng. 29, 1595–1638 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sze K., Yao L.: A hybrid stress ANS solid–shell element and its generalization for smart structure modelling. Part I: solid–shell element formulation. Int. J. Numer. Methods Eng. 48, 545–564 (2000)

    Article  MATH  Google Scholar 

  46. Sze K., Zheng S.: A hybrid stress nine-node degenerated shell element for geometric nonlinear analysis. Comput. Mech. 23, 448–456 (1999)

    Article  MATH  Google Scholar 

  47. Sze K., Zheng S.: A stabilized hybrid-stress solid element for geometrically nonlinear homogeneous and laminated shell analyses. Comput. Methods Appl. Mech. Eng. 191, 1945–1966 (2002)

    Article  MATH  Google Scholar 

  48. Sze K., Liu X., Lo S.: Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elem. Anal. Des. 40, 1551–1569 (2004)

    Article  Google Scholar 

  49. Vu-Quoc L., Tan X.: Optimal solid–shells for non-linear analyses of multilayer composites. I. Statics. Comput. Methods Appl. Mech. Eng. 192, 975–1016 (2003)

    Article  MATH  Google Scholar 

  50. Wriggers P., Eberlein R., Reese S.: A comparison of three-dimensional continuum and shell elements for finite plasticity. Int. J. Solids Struct. 33, 3309–3326 (1996)

    Article  MATH  Google Scholar 

  51. Yoon J., Pourboghrat F., Chung K., Yang D.: Springback prediction for sheet metal forming process using a 3D hybrid membrane/shell method. Int. J. Mech. Sci. 44, 2133–2153 (2002)

    Article  MATH  Google Scholar 

  52. Zienkiewicz O., Taylor R., Too J.: Reduced integration technique in general analysis of plates and shells. Int. J. Numer. Meth. Eng. 3, 275–290 (1971)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Abed-Meraim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salahouelhadj, A., Abed-Meraim, F., Chalal, H. et al. Application of the continuum shell finite element SHB8PS to sheet forming simulation using an extended large strain anisotropic elastic–plastic formulation. Arch Appl Mech 82, 1269–1290 (2012). https://doi.org/10.1007/s00419-012-0620-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-012-0620-x

Keywords

Navigation