Skip to main content
Log in

Renormalization in the Hénon family, II: the heteroclinic web

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We study highly dissipative Hénon maps

$$F_{c,b}: (x,y) \mapsto (c-x^2-by, x)$$

with zero entropy. They form a region Π in the parameter plane bounded on the left by the curve W of infinitely renormalizable maps. We prove that Morse-Smale maps are dense in Π, but there exist infinitely many different topological types of such maps (even away from W). We also prove that in the infinitely renormalizable case, the average Jacobian b F on the attracting Cantor set \({\mathcal{O}}_{F}\) is a topological invariant. These results come from the analysis of the heteroclinic web of the saddle periodic points based on the renormalization theory. Along these lines, we show that the unstable manifolds of the periodic points form a lamination outside \({\mathcal{O}}_{F}\) if and only if there are no heteroclinic tangencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\({\mathcal{A}}_{F}\) :

global attractor, Sect. 4

\({\mathcal{A}}^{n}_{F}\) :

nth-scale attractor, Sect. 6

b F :

average Jacobian, Sect. 2

B 0 :

non-escaping points, Sect. 4

\(B_{v^{n}}\) :

renormalization piece around the tip of level n, Sect. 2

\(\hat{\beta}_{n}\) :

fixed point of R n F, Sect. 3

β n :

periodic point, Sect. 3

\(\beta'_{n}\) :

periodic point, Sect. 3

\(\mathcal{C}_{F}\) :

non-laminar points in \({\mathcal{A}}_{F}\), Sect. 6

γ :

curve, Fig. 7

γ j :

curve, Fig. 7

Γ :

curve, Fig. 7

Γ j :

curve, Fig. 7

D n :

periodic domain containing the tip, Sect. 3

D τ :

domain bounded by \(W^{s}_{{\mathrm{loc}}}(\tau)\) and W u(β 0), Sect. 8

E k,n :

heteroclinic points, Sect. 4

\(E^{s}_{k,n}\) :

heteroclinic points, Sect. 9

\(\Phi^{n}_{0}\) :

coordinate change, Sect. 3

\(\Phi^{k+1}_{k}\) :

coordinate change, Sect. 3

\({\mathcal{H}}^{n}_{\Omega}(\overline{\varepsilon})\) :

n-times renormalizable maps, Sect. 2

\({\mathcal{I}}_{\Omega}(\overline{\varepsilon})\) :

infinitely renormalizable maps, Sect. 2

\({\mathcal{I}}^{n}_{\Omega}(\overline{\epsilon})\) :

n-times renormalizable maps with a periodic attractor of period 2n, Sect. 2

\(K^{u}_{n}\) :

fundamental domain in W u(β n ), Sect. 4

\(K^{s}_{n}\) :

fundamental domain in W s(β n ), Sect. 9

\(\mathcal{K}_{k,n}(\overline{\varepsilon})\) :

maps with heteroclinic tangencies, Definition 4.5

\(\mathcal{UK}_{k,n}(\overline{\varepsilon})\) :

maps in \(\mathcal{K}_{k',n'}(\overline{\varepsilon})\) with kk′<n′≤n, Definition 4.5

κ F :

topological invariant, Sect. 8

λ n :

stable eigenvalue of β n , Sect. 6

μ n :

unstable eigenvalue of β n , Sect. 6

\(\hat{M}^{n}_{i}\) :

component stable manifold of \(\hat{\beta}_{n}\), Sect. 3

\(M^{n}_{i}\) :

component stable manifold of β n , Sect. 3

\({\mathcal{O}}_{F}\) :

critical Cantor set, Sect. 2

\({\mathcal{P}}_{F}\) :

the set of periodic point of F

\(\hat{p}^{n}_{i}\) :

heteroclinic point of R n F, Sect. 3

\(p^{n}_{i}\) :

heteroclinic point of F, Sect. 3, also Fig. 2

q i :

heteroclinic point of R n F, Sect. 4, also Fig. 3

\(q'_{i}\) :

heteroclinic point of R n F, Sect. 4, also Fig. 3

σ :

scaling factor of the unimodal fixed point, Sect. 2

Trap  n :

nth-trapping region, Sect. 4

T n :

saddle region of β n , Sect. 4

U n :

local unstable manifold of β n in T n , Sect. 4

S n :

local stable manifold of β n in T n , Sect. 4

τ F :

tip, Sect. 2

References

  1. Aarts, J.M., Martens, M.: Flows on one-dimensional spaces. Fund. Math. 131, 53–67 (1988)

    MathSciNet  MATH  Google Scholar 

  2. Benedicks, M., Carleson, L.: On dynamics of the Hénon map. Ann. Math. 133, 73–169 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Collet, P., Eckmann, J.P., Koch, H.: Period doubling bifurcations for families of maps on ℝn. J. Stat. Phys. 25, 1–15 (1980)

    Article  MathSciNet  Google Scholar 

  4. de Carvalho, A., Lyubich, M., Martens, M.: Renormalization in the Hénon family, I: universality but non-rigidity. J. Stat. Phys. 121(5/6), 611–669 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. de Melo, W., Palis, J.: Geometric Theory of Dynamical Systems. Springer, Berlin (1982)

    MATH  Google Scholar 

  6. de Faria, E., de Melo, W., Pinto, A.: Global hyperbolicity of renormalization for C r unimodal mappings. Ann. Math. 164(3), 731–824 (2006)

    Article  MATH  Google Scholar 

  7. Gambaudo, J.-M., van Strien, S., Tresser, C.: H��non-like maps with strange attractors: there exist C Kupka-Smale diffeomorphisms on S 2 with neither sinks nor sources. Nonlinearity 2, 287–304 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hartman, P.: On local homeomorphisms of Euclidean spaces. Bol. Soc. Mat. Mexicana 5, 220–241 (1960)

    MathSciNet  MATH  Google Scholar 

  9. Hirsch, M., Pugh, C., Shub, M.: Invariant Manifolds. Lecture Notes in Math., vol. 583. Springer, Berlin (1977)

    MATH  Google Scholar 

  10. Leslie, J.: On the group of real analytic diffeomorphisms of a compact real analytic manifold. Trans. Am. Math. Soc. 274(2), 651–669 (1982)

    Article  MathSciNet  Google Scholar 

  11. Milnor, J.W.: On the concept of attractor. Commun. Math. Phys. 99, 177–195 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. Milnor, J.W.: Attractor, Scholarpedia (2006)

  13. Palis, J.: On Morse-Smale dynamical systems. Topology 8, 385–404 (1968)

    Article  MathSciNet  Google Scholar 

  14. Palis, J.: A differentiable invariant of topological conjugacies and moduli of stability. Astérisque 51, 335–346 (1978)

    MathSciNet  MATH  Google Scholar 

  15. Palis, J.: A global view of dynamics and a conjecture of the denseness of finitude of attractors. Astérisque 261, 335–348 (2000)

    MathSciNet  Google Scholar 

  16. Palis, J., Smale, S.: Structural stability theorems. Global analysis. Proc. Symp. Pure Math. 14, 223–231 (1970)

    MathSciNet  Google Scholar 

  17. Palis, J., Takens, F.: Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Cambridge Studies in Advanced Mathematics, vol. 35. Cambridge University Press, Cambridge

  18. Pugh, C., Shub, M., Wilkinson, A.: Hölder Foliations. Duke Math. J. 86, 517–546 (1997). Correction ibid. 105, 105–106 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lyubich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyubich, M., Martens, M. Renormalization in the Hénon family, II: the heteroclinic web. Invent. math. 186, 115–189 (2011). https://doi.org/10.1007/s00222-011-0316-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-011-0316-9

Keywords

Navigation