Skip to main content
Log in

Determinant Structure for \({\tau}\)-Function of Holonomic Deformation of Linear Differential Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In our previous works, a relationship between Hermite’s two approximation problems and Schlesinger transformations of linear differential equations has been clarified. In this paper, we study \({\tau}\)-functions associated with holonomic deformations of linear differential equations by using Hermite’s two approximation problems. As a result, we present a determinant formula for the ratio of \({\tau}\)-functions (\({\tau}\)-quotient).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chudnovsky D.V., Chudnovsky G.V.: Bäcklund transformations for linear differential equations and Padé approximations. I. J. Math. Pures Appl. 61, 1–16 (1982)

    MATH  Google Scholar 

  2. Chudnovsky D.V., Chudnovsky G.V.: Explicit continued fractions and quantum gravity. Acta Appl. Math. 36, 167–185 (1994)

    Article  MathSciNet  Google Scholar 

  3. Ishikawa M., Okada S.: Identities for determinants and Pfaffians, and their applications. Sugaku Expos. 27, 85–116 (2014)

    Google Scholar 

  4. Ishikawa M., Wakayama M.: Applications of minor summation formula III, Plücker relations, lattice paths and Pfaffian identities. J. Combin. Theory Ser. A 113, 136–157 (2006)

    Article  Google Scholar 

  5. Iwasaki K., Kajiwara K., Nakamura T.: Generating function associated with the rational solutions of the Painlevé II equation. J. Phys. A 35, L207–L211 (2002)

    Article  ADS  Google Scholar 

  6. Iwasaki, K., Kimura, H., Shimomura, S., Yoshida, M.: From Gauss to Painlevé: A Modern Theory of Special Functions. Vieweg, Braunschweig (1991)

    Chapter  Google Scholar 

  7. Jimbo M., Miwa T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. Phys. D 2, 407–448 (1981)

    Article  MathSciNet  Google Scholar 

  8. Jimbo M., Miwa T., Ueno K.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. Phys. D 2, 306–352 (1981)

    Article  MathSciNet  Google Scholar 

  9. Joshi N., Kajiwara K., Mazzocco M.: Generating function associated with the determinant formula for the solutions of the Painlevé II equation. Astérisque 297, 67–78 (2004)

    MATH  Google Scholar 

  10. Joshi N., Kajiwara K., Mazzocco M.: Generating function associated with the Hankel determinant formula for the solutions of the Painlevé IV equation. Funkcial. Ekvac. 49, 451–468 (2006)

    Article  MathSciNet  Google Scholar 

  11. Kajiwara K., Mazzocco M., Ohta Y.: A remark on the Hankel determinant formula for solutions of the Toda equation. J. Phys. A 40, 12661–12675 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  12. Knuth, D.: Overlapping Pfaffians. Electron. J. Combin. 3, no. 2, #R5 (1996)

  13. Magnus A.: Painlevé-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials. J. Comput. Appl. Math. 57, 215–237 (1995)

    Article  MathSciNet  Google Scholar 

  14. Mahler K.: Perfect systems. Compos. Math. 19, 95–166 (1968)

    MathSciNet  MATH  Google Scholar 

  15. Mano T.: Determinant formula for solutions of the Garnier system and Padé approximation. J. Phys. A 45, 135206 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  16. Mano, T., Tsuda, T.: Two approximation problems by Hermite, and Schlesinger transformation. RIMS Kokyuroku Bessatsu B 47, 77–86 (2014) (in Japanese)

  17. Mano T., Tsuda T.: Hermite–Padé approximation, isomonodromic deformation and hypergeometric integral. Math. Z. 285, 397–431 (2017)

    Article  MathSciNet  Google Scholar 

  18. Masuda T.: On a class of algebraic solutions to the Painlevé VI equation, its determinant formula and coalescence cascade. Funkcial. Ekvac. 46, 121–171 (2003)

    Article  MathSciNet  Google Scholar 

  19. Matsumoto S.: Hyperdeterminantal expressions for Jack functions of rectangular shapes. J. Algebra 320, 612–632 (2008)

    Article  MathSciNet  Google Scholar 

  20. Ohta, Y.: Bilinear Theory of Solitons. Doctoral Thesis, Graduate School of Engineering, University of Tokyo (1992)

  21. Oshima T.: Classification of Fuchsian systems and their connection problem. RIMS Kokyuroku Bessatsu B 37, 163–192 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Suzuki T.: Six-dimensional Painlevé systems and their particular solutions in terms of rigid systems. J. Math. Phys. 55, 102902 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  23. Tsuda T.: Birational symmetries, Hirota bilinear forms and special solutions of the Garnier systems in 2-variables. J. Math. Sci. Univ. Tokyo 10, 355–371 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Tsuda T.: Rational solutions of the Garnier system in terms of Schur polynomials. Int. Math. Res. Not. 43, 2341–2358 (2003)

    Article  MathSciNet  Google Scholar 

  25. Tsuda T.: Toda equation and special polynomials associated with the Garnier system. Adv. Math. 206, 657–683 (2006)

    Article  MathSciNet  Google Scholar 

  26. Tsuda T.: UC hierarchy and monodromy preserving deformation. J. Reine Angew. Math. 690, 1–34 (2014)

    Article  MathSciNet  Google Scholar 

  27. Wenzel W.: Pfaffian forms and \({\Delta}\)-matroids. Discrete Math. 115, 253–266 (1993)

    Article  MathSciNet  Google Scholar 

  28. Yamada Y.: Padé method to Painlevé equations. Funkcial. Ekvac. 52, 83–92 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant-in-aid from the Japan Society for the Promotion of Science (Grant Numbers 16K05068, 17K05270, 17K05335, 25800082 and 25870234).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruhisa Tsuda.

Additional information

Communicated by P. Deift

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishikawa, M., Mano, T. & Tsuda, T. Determinant Structure for \({\tau}\)-Function of Holonomic Deformation of Linear Differential Equations. Commun. Math. Phys. 363, 1081–1101 (2018). https://doi.org/10.1007/s00220-018-3256-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3256-z

Navigation