Skip to main content
Log in

Beyond Aztec Castles: Toric Cascades in the dP 3 Quiver

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Given one of an infinite class of supersymmetric quiver gauge theories, string theorists can associate a corresponding toric variety (which is a Calabi–Yau 3-fold) as well as an associated combinatorial model known as a brane tiling. In combinatorial language, a brane tiling is a bipartite graph on a torus and its perfect matchings are of interest to both combinatorialists and physicists alike. A cluster algebra may also be associated to such quivers and in this paper we study the generators of this algebra, known as cluster variables, for the quiver associated to the cone over the del Pezzo surface d P 3. In particular, mutation sequences involving mutations exclusively at vertices with two in-coming arrows and two out-going arrows are referred to as toric cascades in the string theory literature. Such toric cascades give rise to interesting discrete integrable systems on the level of cluster variable dynamics. We provide an explicit algebraic formula for all cluster variables that are reachable by toric cascades as well as a combinatorial interpretation involving perfect matchings of subgraphs of the d P 3 brane tiling for these formulas in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beasley, C.E., Plesser M.R.: Toric duality is Seiberg duality. J. High Energy Phys. 1201, 001 (2001)

  2. Bosquet-Mélou M., Propp J., West J.: Perfect matchings for the three-term Gale–Robinson sequences. Electron. J. Comb. 16(1), R125 (2009)

    MATH  MathSciNet  Google Scholar 

  3. Borisov L., Hua Z.: On the conjecture of King for smooth toric Deligne–Mumford stacks. Adv. Math. 221(1), 277–301 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ciucu M.: Perfect matchings and perfect powers. J. Algebr. Comb. 17, 335–375 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ciucu M.: A generalization of Kuo condensation. J. Comb. Theory Ser. A 134, 221–241 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ciucu M., Fischer I.: Proof of two conjectures of Ciucu and Krattenthaler on the enumeration of lozenge tilings of hexagons with cut off corners. J. Comb. Theory Ser. A 133, 228–250 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ciucu M., Lai T.: Proof of Blum’s conjecture on hexagonal dungeons. J. Comb. Theory Ser. A 125, 273–305 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cottrell, C., Young B.: Domino shuffling for the Del Pezzo 3 lattice. ArXiv e-prints, October 2010. arXiv:1011.0045

  9. Di Francesco P.: T-systems, networks and dimers. Commun. Math. Phys. 331(3), 1237–1270 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Di Francesco P., Soto-Garrido R.: Arctic curves of the octahedron equation. J. Phys. A 47(28), 285204 (2014) Preprint arXiv:1402.4493

    Article  MATH  MathSciNet  Google Scholar 

  11. Eager R., Franco S.: Colored BPS pyramid partition functions, quivers and cluster transformations. J. High Energy Phys. 1209, 038 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  12. Elkies, N., Kuperberg, G., Larsen, M., Propp, J.: Alternating-sign matrices and domino tilings. J. Algebr. Comb. 1, 111–132, 219–234 (1992)

  13. Felikson A., Shapiro M., Tumarkin P.: Skew-symmetric cluster algebras of finite mutation type. J. Eur. Math. Soc. 14(4), 1135–1180 (2012) arXiv:0811.1703

    Article  MATH  MathSciNet  Google Scholar 

  14. Feng, B., Hanany, A., He, Y.-H., Uranga, A.M.: Toric duality as Seiberg duality and brane diamonds. J. High Energy Phys. 0112, 035 (2001). arXiv:hep-th/0109063, doi:10.1088/1126-6708/2001/12/035

  15. Feng, B., He, Y.-H., Kennaway, K., Vafa, C.: Dimer models from mirror symmetry and quivering amoebae. Adv. Theor. Math. Phys. 12, no. 3 (2008). arXiv:hep-th/0511287

  16. Fock, V.V., Goncharov, A.B.: Moduli Spaces of Local Systems and Higher Teichmuller Theory, vol. 103, p. 211. Publications Mathematiques de Institut des Hautes Etudes Scientifiques, Paris

  17. Franco S., Hanany A., Kennaway K.D., Vegh D., Wecht B.: Brane dimers and quiver gauge theories. J. High Energy Phys. 0601, 096 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  18. Franco S., Hanany A., Martelli D., Sparks J., Vegh D., Wecht B.: Gauge theories from toric geometries and brane tilings. J. High Energy Phys. 0601, 128 (2006)

    Article  ADS  Google Scholar 

  19. Franco S., Hanany A., Uranga A.: Multi-flux warped throats and cascading gauge theories. J. High Energy Phys. 0502, 113 (2005)

    MathSciNet  Google Scholar 

  20. Fomin, S., Zelevinsky, A.: Cluster algebras I: foundations. J. Am. Math. Soc. 15(2), 497–529 (2002)

  21. Fulmek M.: Graphical condensation, overlapping Pfaffians and superpositions of matchings. Electron. J. Comb. 17(1), R83 (2010)

    MATH  MathSciNet  Google Scholar 

  22. Galashin, P., Pylyavskyy, P.: The classification of Zamolodchikov periodic quivers. ArXiv Mathematics e-prints, April 2016. arXiv:1603.03942

  23. Gehktman, M., Shapiro, M.: Private communication (July 2015)

  24. Glick M.: The pentagram map and Y-patterns. Adv. Math. 227, 1019–1045 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Goncharov A., Kenyon R.: Dimers and cluster integrable systems. Ann. Sci. Éc. Norm. Supér. (4) 46(5), 747–813 (2013) arXiv:1107.5588

    Article  MATH  MathSciNet  Google Scholar 

  26. Gubser S.S., Klebanov I.R., Polyakov A.M.: Gauge theory correlators from non-cirtical string theory. Phys. Lett. B 428, 105–114 (1998) arXiv:hep-th/9802109

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Hanany A., Vegh D.: Quivers, tilings, branes and rhombi. J. High Energy Phys. 0710, 029 (2007) arXiv:hep-th/0511063

    Article  ADS  MathSciNet  Google Scholar 

  28. Hanany, A., Seong, R.: Brane tilings and reflexive polygons. Fortschr. Phys. 60, 695–803 (2012)

  29. Heckman J., Vafa C.: Crystal melting and black holes. J. High Energy Phys. 0709, 011 (2007) arxiv:hep-th/0610005

    Article  ADS  MathSciNet  Google Scholar 

  30. Henriques A., Kamnitzer J.: The octahedron recurrence and \({\mathfrak{gl}_n}\) crystals. Adv. Math. 206(1), 211–249 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Henriques A., Speyer D.E.: The multidimensional cube recurrence. Adv. Math. 223(3), 1107–1136 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  32. Jeong, I.: Bipartite graphs, quivers, and cluster variables (2011). http://www.math.umn.edu/~reiner/REU/Jeong2011.pdf

  33. Jeong, I., Musiker, G., Zhang, S.: Gale–Robinson sequences and brane tilings. In: DMTCS Proc. AS, pp. 737–748 (2013). http://www.liafa.jussieu.fr/fpsac13/pdfAbstracts/dmAS0169.pdf

  34. Kenyon, R.: An introduction to the dimer model. ArXiv Mathematics e-prints. October 2003. arXiv:math/0310326

  35. Kenyon R., Okounkov A., Sheffield S.: Dimers and amoebae. Ann. Math. (2) 163(3), 1019–1056 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  36. Kenyon R., Wilson D.: The space of circular planar electrical networks. SIAM J. Discrete Math. 31(1), 1–28 (2017) arXiv:1411.7425

    Article  MATH  MathSciNet  Google Scholar 

  37. Kuo, E.H.: Applications of graphical condensation for enumerating matchings and tilings. Theor. Comput. Sci. 319, 29–57 (2004)

  38. Kuo, E.H.: Graphical condensation generalizations involving Pfaffians and determinants. ArXiv Mathematics e-prints, May 2006. arXiv:math/0605154

  39. Lai T.: A generalization of Aztec dragons. Graphs Comb. 32(5), 1979–1999 (2016) arXiv:1504.00303

    Article  MATH  MathSciNet  Google Scholar 

  40. Lai T.: A new proof for the number of lozenge tilings of quartered hexagons. Discrete Math. 338, 1866–1872 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  41. Leoni, M., Musiker, G., Neel, S., Turner, P.: Aztec castles and the dP3 quiver. J. Phys. A Math. Theor. 47, 474011 (2014)

  42. Maldacena J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998) arXiv:hep-th/9711200

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. Muir, T.: The Theory of Determinants in the Historical Order of Development, vol. I. Macmillan, London (1906)

  44. Musiker G., Schiffler R., Williams L.: Positivity for cluster algebras from surfaces. Adv. Math. 227, 2241–2308 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  45. Musiker, G., Stump, C.: A compendium on the cluster algebra and quiver package in Sage. Sémin. Lothar. Comb. 65, B65d (2010)

  46. Postnikov, A.: Total positivity, grassmannians, and networks. arXiv:math/0609764

  47. Propp, J.: Enumeration of Matchings: Problems and Progress, New Perspectives in Geometric Combinatorics, pp. 255–291. Cambridge University Press, Cambridge (1999)

  48. Propp, J.: Enumeration of tilings. In: Bóna, M. (ed.) Handbook of Enumerative Combinatorics, pp. 541–588. CRC Press, Boca Raton (2015). http://faculty.uml.edu/jpropp/eot.pdf

  49. Rouquier, R.: Weyl groups, affine Weyl groups, and reflection groups. In: Representations of Reductive Groups, vol. 16, pp. 21–40 (1998). http://www.math.ucla.edu/~rouquier/papers/weyl.pdf

  50. Scott J.S.: Grassmannians and cluster algebras. Proc. Lond. Math. Soc. 92(3(2), 345–380 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  51. Speyer D.E.: Perfect matchings and the octahedron recurrence. J. Algebr. Comb. 25(3), 309–348 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  52. Stein, W.A., et al.: Sage Mathematics Software (Version 6.10). The Sage Development Team (2015). http://www.sagemath.org

  53. Stembridge J.: Admissible W-graphs and commuting Cartan matrices. Adv. Appl. Math. 44(3), 203–224 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  54. Witten E.: Anti de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998) arXiv:hep-th/9802150

    Article  ADS  MATH  MathSciNet  Google Scholar 

  55. Yan W., Zhang F.: Graphical condensation for enumerating perfect matchings. J. Comb. Theory Ser. A 110, 113–125 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  56. Zhang, S.: Cluster variables and perfect matchings of subgraphs of the d P 3 lattice (2012). arXiv:1511.06055, http://www.math.umn.edu/~reiner/REU/Zhang2012.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregg Musiker.

Additional information

Communicated by C. Schweigert

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, T., Musiker, G. Beyond Aztec Castles: Toric Cascades in the dP 3 Quiver. Commun. Math. Phys. 356, 823–881 (2017). https://doi.org/10.1007/s00220-017-2993-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2993-8

Navigation