Skip to main content
Log in

Abundance of Fast Growth of the Number of Periodic Points in 2-Dimensional Area-Preserving Dynamics

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove that there exists an open subset of the set of real-analytic Hamiltonian diffeomorphisms of the two-dimensional torus in which diffeomorphisms exhibiting fast growth of the number of periodic points are dense. We also prove that there exists an open subset of the set of smooth area-preserving diffeomorphisms of a closed surface in which typical diffeomorphisms exhibit fast growth of the number of periodic points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I.: Arnolds problems. Translated and revised edition of the 2000 Russian original. With a preface by Philippov, V., Yakivchik, A., Peters, M. Springer, Berlin; PHASIS, Moscow (2004)

  2. Artin M., Mazur B.: On periodic points. Ann. Math. 81(1), 82–99 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  3. Asaoka, M., Turaev, D., Shinohara, K.: Degenerate behavior in non-hyperbolic semigroup actions on the interval: fast growth of periodic points and universal dynamics. Math. Ann. (2016). doi:10.1007/s00208-016-1468-0

  4. Berger P.: Generic family with robustly infinitely many sinks. Invent. Math. 205, 121–172 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Berger, P.: Generic family displaying robustly a fast growth of the number of periodic points. Preprint. arXiv:1701.0239

  6. Broer H.W., Tangerman F.M.: From a differentiable to a real analytic perturbation theory, applications to the Kupka Smale theorems. Ergod. Theory Dyn. Syst. 6, 345–362 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonatti C., Díaz L., Fisher T.: Super-exponential growth of the number of periodic points inside homoclinic classes. Discrete Contin. Dyn. Syst. 20(3), 589–604 (2008)

    MathSciNet  MATH  Google Scholar 

  8. de Melo W.: A finiteness problem for one dimensional maps. Proc. AMS 101, 721–727 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hunt, B., Kaloshin, V.Yu.: Prevalence. In: Handbook of Dynamical Systems, vol. 3, pp. 43–87. Elsevier/North-Holland, Amsterdam (2010)

  10. Hunt B.R., Sauer T., Yorke J.A.: Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces. Bull. Amer. Math. Soc. (N.S.) 27(2), 217–238 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ilyashenko, Y., Li, W.: Nonlocal bifurcations. Mathematical Surveys and Monographs, 66. American Mathematical Society, Providence, RI, xiv+286 pp (1999)

  12. Kaloshin V.Y.: Some prevalent properties of smooth dynamical systems. Proc. Steklov Inst. Math. 213, 123–151 (1997)

    MathSciNet  Google Scholar 

  13. Kaloshin V.Y.: An extension of the Artin–Mazur theorem. Ann. Math. (2) 150(2), 729–741 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kaloshin V.: Generic diffeomorphisms with superexponential growth of number of periodic orbits. Commun. Math. Phys. 211(1), 253–271 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Kaloshin V.Yu., Hunt B.: A stretched exponential bound on the rate of growth of the number of periodic points for prevalent diffeomorphisms I. Electron. Res. Announc. Am. Math. Soc. 7, 17–27 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kaloshin V.Yu., Hunt B.: A stretched exponential bound on the rate of growth of the number of periodic points for prevalent diffeomorphisms II. Electron. Res. Announc. Am. Math. Soc. 7, 28–36 (2001) MR1826993

    Article  MathSciNet  MATH  Google Scholar 

  17. Kaloshin V.Yu., Hunt B.: Stretched exponential estimates on grow of the number of periodic points for prevalent diffeomorphisms. Ann. Math. 165, 89–170 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kaloshin V., Kozlovski O.S.: A C r unimodal map with an arbitrary fast growth of the number of periodic points. Ergod. Theory Dyn. Syst. 32(1), 159–165 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kaloshin V., Saprykina M.: Generic 3-dimensional volume-preserving diffeomorphisms with superexponential growth of number of periodic orbits. Discrete Contin. Dyn. Syst. 15(2), 611–640 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kozlovski, O.S.: The dynamics of intersections of analytic manifolds. (Russian) Dokl. Akad. Nauk 323 (1992), no. 5, 823–825; translation in Russian Acad. Sci. Dokl. Math. 45 (1992), no. 2, 425–427 (1993)

  21. Krantz, S.G., Park, H.R.: A primer of real analytic functions, 2nd edn. Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Boston, Inc., Boston, MA (2002)

  22. Martens M., de Melo W., van Strien S.: Julia–Fatou–Sullivan theory for real one-dimensional dynamics. Acta Math. 168(3–4), 273–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Moser, J.K.: Stable and random motions in dynamical systems. Reprint of the 1973 original. Princeton University Press, Princeton, NJ, xii+198 pp (2001)

  24. Newhouse S.E.: Diffeomorphisms with infinitely many sinks. Topology 12, 9–18 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  25. Palis J.: A global perspective for non-conservative dynamics. Ann. Inst. H. Poincaré Anal. Non Linéaire 22, 485–507 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Robinson, C.: Dynamical Systems. Stability, Symbolic Dynamics, and Chaos, 2nd edn. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1999)

  27. Siegel, C.L., Moser J.K.: Lectures on celestial mechanics. Translation by Charles I. Kalme. Die Grundlehren der mathematischen Wissenschaften, Band 187. Springer–Verlag, New York–Heidelberg (1971)

  28. Takens, F.: A non-stabilizable jet of a singularity of a vector field: the analytic case. Algebraic and differential topology–global differential geometry, 288–305, Teubner-Texte Math., 70, Teubner, Leipzig (1984)

  29. Ott W., Yorke J.Y.: Prevalence. Bull. Am. Math. Soc. (N.S.) 42(3), 263–290 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Asaoka.

Additional information

Communicated by C. Liverani

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asaoka, M. Abundance of Fast Growth of the Number of Periodic Points in 2-Dimensional Area-Preserving Dynamics. Commun. Math. Phys. 356, 1–17 (2017). https://doi.org/10.1007/s00220-017-2972-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2972-0

Navigation