Skip to main content
Log in

Low Temperature Asymptotics of Spherical Mean Field Spin Glasses

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we study the low temperature limit of the spherical Crisanti–Sommers variational problem. We identify the \({\Gamma}\)-limit of the Crisanti–Sommers functionals, thereby establishing a rigorous variational problem for the ground state energy of spherical mixed p-spin glasses. As an application, we compute moderate deviations of the corresponding minimizers in the low temperature limit. In particular, for a large class of models this yields moderate deviations for the overlap distribution as well as providing sharp interpolation estimates between models. We then analyze the ground state energy problem. We show that this variational problem is dual to an obstacle-type problem. This duality is at the heart of our analysis. We present the regularity theory of the optimizers of the primal and dual problems. This culminates in a simple method for constructing a finite dimensional space in which these optimizers live for any model. As a consequence of these results, we unify independent predictions of Crisanti–Leuzzi and Auffinger–Ben Arous regarding the one-step Replica Symmetry Breaking (1RSB) phase in this limit. We find that the “positive replicon eigenvalue” and “pure-like” conditions are together necessary for optimality, but that neither are themselves sufficient, answering a question of Auffinger and Ben Arous in the negative. We end by proving that these conditions completely characterize the 1RSB phase in 2 + p-spin models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler R.J., Taylor J.E.: Random Fields and Geometry. Springer Monographs in Mathematics. Springer, New York (2007)

    Google Scholar 

  2. Auffinger A., Arous G.B.: Complexity of random smooth functions on the high-dimensional sphere. Ann. Probab. 41(6), 4214–4247 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Auffinger A., Chen W.-K.: On properties of parisi measures. Probab. Theory Relat. Fields 161(3), 817–850 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Auffinger, A., Chen, W.-K.: Parisi formula for the ground state energy in the mixed p-spin model. Ann. Probab. (to appear)

  5. Braides, A.: \({\Gamma}\)-Convergence for Beginners, volume 22 of Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, Oxford (2002)

  6. Brézis H., Nirenberg L., Stampacchia G.: A remark on Ky Fan’s minimax principle. Boll. Un. Mat. Ital. 4(6), 293–300 (1972)

    MathSciNet  MATH  Google Scholar 

  7. Caffarelli L.A.: The obstacle problem revisited. J. Fourier Anal. Appl. 4(4), 383–402 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caffarelli L.A., Friedman A.: The obstacle problem for the biharmonic operator. Ann. Scuola Norm. Super. Pisa Classe Sci. 6(1), 151–184 (1979)

    MathSciNet  MATH  Google Scholar 

  9. Chen W.-K., Sen A.: Parisi formula, disorder chaos and fluctuation for the ground state energy in the spherical mixed p-spin models. Commun. Math. Phys. 350(1), 129–173 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, W.-K.: The Aizenman–Sims–Starr scheme and Parisi formula for mixed p-spin spherical models. Electron. J. Probab. 18(94), 14 (2013)

  11. Cimatti G.: The constrained elastic beam. Meccanica—J. Ital. Assoc. Theor. Appl. Mech. 8, 119–124 (1973)

    MathSciNet  MATH  Google Scholar 

  12. Crisanti A., Leuzzi L.: Spherical 2 + p spin-glass model: an exactly solvable model for glass to spin-glass transition. Phys. Rev. Lett. 93, 217203 (2004)

    Article  ADS  Google Scholar 

  13. Crisanti A., Leuzzi L.: Amorphous-amorphous transition and the two-step replica symmetry breaking phase. Phys. Rev. B 76, 184417 (2007)

    Article  ADS  Google Scholar 

  14. Crisanti A., Jürgen Sommers H.: The spherical p-spin interaction spin glass model: the statics. Z. Phys. B Condens. Matter 87(3), 341–354 (1992)

    Article  ADS  Google Scholar 

  15. Dal Maso, G.: An Introduction to \({\Gamma}\)-Convergence. Progress in Nonlinear Differential Equations and Their Applications, 8. Birkhäuser Boston, Inc., Boston, MA (1993)

  16. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1992)

  17. Jagannath, A., Tobasco, I.: Some properties of the phase diagram for mixed p-spin glasses. Probab. Theory Relat. Fields (to appear)

  18. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications, volume 31 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. Reprint of the 1980 original.

  19. Kirkpatrick S., Gelatt C.D., Vecchi M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Krakoviack V.: Comment on “spherical 2 + p spin-glass model: An analytically solvable model with a glass-to-glass transition”. Phys. Rev. B 76, 136401 (2007)

    Article  ADS  Google Scholar 

  21. Lieb, E.H., Loss, M.: Analysis, volume 14 of Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence, RI (2001)

  22. Martin, O.C., Monasson, R., Zecchina, R.: Statistical mechanics methods and phase transitions in optimization problems. Theor. Comput. Sci. 265(12), 3–67, (2001). Phase Transitions in Combinatorial Problems

  23. Mézard, M., Parisi, G., Virasoro, M.A.: Spin Glass Theory and Beyond, volume 9. World Scientific, Singapore (1987)

  24. Nirenberg, L.: Topics in Nonlinear Functional Analysis, volume 6 of Courant Lecture Notes in Mathematics. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2001. Chapter 6 by E. Zehnder, Notes by R. A. Artino, Revised reprint of the 1974 original

  25. Panchenko D.: The Sherrington–Kirkpatrick Model. Springer, New York (2013)

    Book  MATH  Google Scholar 

  26. Serfaty, S.: Coulomb gases and Ginzburg–Landau vortices. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2015)

  27. Subag, E.: The complexity of spherical p-spin models—a second moment approach. ArXiv e-prints (2015)

  28. Talagrand M.: Free energy of the spherical mean field model. Probab. Theory Relat. Fields 134(3), 339–382 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Talagrand, M.: Upper and Lower Bounds for Stochastic Processes, volume 60 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Heidelberg, 2014. Modern methods and classical problems

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Tobasco.

Additional information

Communicated by F. Toninelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagannath, A., Tobasco, I. Low Temperature Asymptotics of Spherical Mean Field Spin Glasses. Commun. Math. Phys. 352, 979–1017 (2017). https://doi.org/10.1007/s00220-017-2864-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2864-3

Navigation