Skip to main content
Log in

Algebraic Davis Decomposition and Asymmetric Doob Inequalities

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we investigate asymmetric forms of Doob maximal inequality. The asymmetry is imposed by noncommutativity. Let \({(\mathcal{M}, \tau)}\) be a noncommutative probability space equipped with a filtration of von Neumann subalgebras \({(\mathcal{M}_n)_{n \ge 1}}\), whose union \({\bigcup_{n\geq1}\mathcal{M}_n}\) is weak-* dense in \({\mathcal{M}}\). Let \({\mathcal{E}_n}\) denote the corresponding family of conditional expectations. As an illustration for an asymmetric result, we prove that for \({1 < p < 2}\) and \({x \in L_p(\mathcal{M},\tau)}\) one can find \({a, b \in L_p(\mathcal{M},\tau)}\) and contractions \({u_n, v_n \in \mathcal{M}}\) such that

$$\mathcal{E}_n(x) = a u_n + v_n b \quad {\rm and} \quad {\rm max} \big\{ \|a\|_p,\|b\|_p \big\} \le c_p \|x\|_p.$$

Moreover, it turns out that \({a u_n}\) and \({v_n b}\) converge in the row/column Hardy spaces \({\mathcal{H}_p^r(\mathcal{M})}\) and \({\mathcal{H}_p^c(\mathcal{M})}\) respectively. In particular, this solves a problem posed by the Defant and Junge in 2004. In the case p = 1, our results establish a noncommutative form of the Davis celebrated theorem on the relation betwe en martingale maximal and square functions in L 1, whose noncommutative form has remained open for quite some time. Given \({1 \le p \le 2}\), we also provide new weak type maximal estimates, which imply in turn left/right almost uniform convergence of \({\mathcal{E}_n(x)}\) in row/column Hardy spaces. This improves the bilateral convergence known so far. Our approach is based on new forms of Davis martingale decomposition which are of independent interest, and an algebraic atomic description for the involved Hardy spaces. The latter results are new even for commutative von Neumann algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cuculescu I: Martingale inequalities on von Neumann algebras. J. Multivariate Anal. 1, 17–27 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  2. Davis B.: On the integrability of the martingale square function. Israel J. Math. 8, 187–190 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  3. Defant A., Junge M.: Maximal theorems of Menchoff-Rademacher type in non-commutative \({L_q}\)-spaces. J. Funct. Anal. 206, 322–355 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hong G., Mei T.: John-Nirenberg inequality and atomic decomposition for noncommutative martingales, J. Funct. Anal 263(4), 1064–1097 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Junge M.: Doob inequality for non-commutative martingales. J. reine angew. Math. 549, 149–190 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Junge, M., Le Merdy, C., Xu, Q.: \({H^\infty}\) functional calculus and square functions on noncommutative L p -spaces. Asterisque, 305 (2006)

  7. Junge M., Mei T.: Noncommutative Riesz transforms—a probabilistic approach. Amer. J. Math. 132, 611–681 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Junge M., Mei T., Parcet J.: Smooth Fourier multipliers in group von Neumann algebras. Geom. Funct. Anal. 24, 1913–1980 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Junge M., Parcet J.: Operator space embedding of Schatten p-classes into von Neumann algebra preduals. Geom. Funct. Anal 18, 522–551 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Junge, M., Parcet, J.: Mixed-norm inequalities and operator space L p embedding theory. Mem. Amer. Math. Soc, 952 (2010)

  11. Junge, M., Perrin, M.: Theory of \({\mathcal{H}_p}\) spaces for continuous filtrations in von Neumann algebras. Astérisque, 362 (2014)

  12. Junge M., Xu Q.: On the best constants in some non-commutative martingale inequalities. Bull. London Math. Soc. 37, 243–253 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Junge M., Xu Q.: Noncommutative maximal ergodic theorems. J. Amer. Math. Soc. 20, 385–439 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lust-Piquard F.: Inégalités de Khintchine dans C p \({(1 < p < \infty)}\). C.R. Acad. Sci. Paris 303, 289–292 (1986)

    MathSciNet  MATH  Google Scholar 

  15. Perrin M.: A noncommutative Davis’ decomposition for martingales. J. London Math. Soc. 80, 627–648 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Perrin, M.: Inégalités de martingales non commutatives et applications. Ph.D. Thesis Dissertation (2011)

  17. Pisier, G.: Non-commutative vector valued L p -spaces and completely p-summing maps. Astérisque, 247 (1998)

  18. Pisier G.: Introduction to Operator Space Theory. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  19. Pisier, G., Ricard, É.: The noncommutative Khintchine inequalities for 0 <  p <  1. Preprint (2014).

  20. Pisier G., Shlyakhtenko D.: Grothendieck’s theorem for operator spaces. Invent. Math. 150, 185–217 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Pisier G., Xu Q.: Non-commutative martingale inequalities. Comm. Math. Phys. 189, 667–698 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Pisier, G., Xu, Q.: Non-commutative L p -spaces. Handbook of the Geometry of Banach Spaces II. In: Johnson, W.B., Lindenstrauss, J.(eds.) pp. 1459-1517. North-Holland (2003)

  23. Xu Q.: Operator space Grothendieck inequalities for noncommutative L p -spaces. Duke Math. J. 131, 525–574 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Junge.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, G., Junge, M. & Parcet, J. Algebraic Davis Decomposition and Asymmetric Doob Inequalities. Commun. Math. Phys. 346, 995–1019 (2016). https://doi.org/10.1007/s00220-016-2581-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2581-3

Keywords

Navigation