Skip to main content
Log in

Convergence analysis for a finite element approximation of a steady model for electrorheological fluids

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we study the finite element approximation of systems of \({p(\cdot )}\)-Stokes type, where \({p(\cdot )}\) is a (non constant) given function of the space variables. We derive—in some cases optimal—error estimates for finite element approximation of the velocity and of the pressure, in a suitable functional setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. More precisely, on p and the John constant of G.

References

  1. Acerbi, E., Mingione, G.: Regularity results for stationary electrorheological fluids. Arch. Ration. Mech. Anal 164, 213–259 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bao, W., Barrett, J.W.: A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-Newtonian flow. RAIRO Modél. Math. Anal. Numér. 32, 843–858 (1998)

    MathSciNet  MATH  Google Scholar 

  3. Barrett, J.W., Liu, W.B.: Finite element approximation of the \(p\)-Laplacian. Math. Comput. 61(204), 523–537 (1993)

    MathSciNet  MATH  Google Scholar 

  4. Barrett, J.W., Liu, W.B.: Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow. Numer. Math. 68(4), 437–456 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Belenki, L., Berselli, L.C., Diening, L., Růžička, M.: On the finite element approximation of p-Stokes systems. SIAM J. Numer. Anal. 50(2), 373–397 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bildhauer, M., Fuchs, M.: A regularity result for stationary electrorheological fluids in two dimensions. Math. Methods Appl. Sci. 27(13), 1607–1617 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bildhauer, M., Fuchs, M., Zhong, X.: On strong solutions of the differential equations modelling the steady flow of certain incompressible generalized Newtonian fluids. Algebra i Analiz 18, 1–23 (2006). [St. Petersburg Math. J. 18, 183–199 (2007)]

  8. Bird, R.B., Armstrong, R.C., Hassager, O.: Dynamic of Polymer Liquids, 2nd edn. Wiley, New York (1987)

  9. Beirão da Veiga, H., Kaplický, P., Růžička, M.: Boundary regularity of shear thickening flows. J. Math. Fluid Mech. 13(3), 387–404 (2011)

  10. Breit, D.: Smoothness properties of solutions to the nonlinear Stokes problem with non-autonomous potentials. Comment. Math. Univ. Carol. 54, 493–508 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Breit, D., Diening, L., Schwarzacher, S.: Solenoidal Lipschitz truncation for parabolic PDEs. Math. Model Methods Appl. Sci. 23, 2671–2700 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Breit, D., Diening, L., Schwarzacher, S.: Finite element methods for the \(p(x)\)-Laplacian. SIAM J. Numer. Anal. 53(1), 551–572 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer Series in Computational Mathematics, vol. 15. Springer, New York (1991)

  14. Carelli, E., Haehnle, J., Prohl, A.: Convergence analysis for incompressible generalized Newtonian fluid flows with nonstandard anisotropic growth conditions. SIAM. J. Numer. Anal. 48(1), 164–190 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Crispo, F., Grisanti, C.R.: On the \(C^{1,\gamma }(\overline{\Omega })\cap W^{2,2}(\Omega )\) regularity for a class of electro-rheological fluids. J. Math. Anal. Appl. 356(1), 119–132 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Diening, L.: Theoretical and numerical results for electrorheological fluids. Ph.D. thesis, Albert-Ludwigs-Universität, Freiburg (2002)

  17. Diening, L., Ettwein, F.: Fractional estimates for non-differentiable elliptic systems with general growth. Forum Math. 20(3), 523–556 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Diening, L., Ettwein, F., Růžička, M.: \(C^{1,\alpha }\)-regularity for electrorheological fluids in two dimensions. NoDEA Nonlinear Differ. Equ. Appl. 14(1–2), 207–217 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Diening, L., Hästö, P., Harjulehto, P., Růžička, M.: Lebesgue and Sobolev spaces with variable exponents. Springer Lecture Notes, vol. 2017. Springer, Berlin (2011)

  20. Diening, L., Málek, J., Steinhauer, M.: On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications. ESAIM Control Optim. Calc. Var. 14(2), 211–232 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Diening, L., Růžička, M.: Interpolation operators in Orlicz Sobolev spaces. Numer. Math. 107(1), 107–129 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Frehse, J., Málek, J., Steinhauer, M.: On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method. SIAM J. Math. Anal. 34, 1064–1083 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Girault, V., Raviart, P.-A.: Finite element approximation of the Navier–Stokes equations. Lecture Notes in Mathematics, vol. 749. Springer, Berlin (1979)

  24. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow, 2nd edn. Gordon and Breach, New York (1969)

  25. Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod. Gauthier-Villars, Paris (1969)

    MATH  Google Scholar 

  26. Liu, W.B., Barrett, J.W.: Finite element approximation of some degenerate monotone quasilinear elliptic systems. SIAM J. Numer. Anal. 33(1), 88–106 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Málek, J., Nečas, J., Rokyta, M., Růžička, M.: Weak and measure-valued solutions to evolutionary PDEs. Applied Mathematics and Mathematical Computation, vol. 13. Chapman & Hall, London (1996)

  28. Málek, J., Rajagopal, K.R., Růžička, M.: Existence and regularity of solutions and the stability of the rest state for fluids with shear dependent viscosity. Math. Models Methods Appl. Sci. 5, 789–812 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pick, L., Růžička, M.: An example of a space \(l^{p(x)}\) on which the Hardy–Littlewood maximal operator is not bounded. Expo. Math. 19(4), 369–371 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rao, M.M., Ren, Z.D.: Theory of Orlicz spaces. Monographs and Textbooks in Pure and Applied Mathematics, vol. 146. Marcel Dekker Inc., New York (1991)

  31. Reshetnyak, Y.G.: Estimates for certain differential operators with finite-dimensional kernel. Sib. Math. J. 11, 315–326 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rajagopal, K.R., Růžička, M.: On the modeling of electrorheological materials. Mech. Res. Commun. 23, 401–407 (1996)

    Article  MATH  Google Scholar 

  33. Rajagopal, K.R., Růžička, M.: Mathematical modeling of electrorheological materials. Contin. Mech. Thermodyn. 13, 59–78 (2001)

    Article  MATH  Google Scholar 

  34. Růžička, M.: Electrorheological fluids: modeling and mathematical theory. In: Lecture Notes in Mathematics, vol. 1748. Springer, Berlin (2000)

  35. Růžička, M.: Modeling, mathematical and numerical analysis of electrorheological fluids. Appl. Math. 49(6), 565–609 (2004)

  36. Růžička, M.: Analysis of generalized Newtonian fluids. In: Topics in Mathematical Fluid Mechanics. Lecture Notes in Math., vol. 2073, pp. 199–238. Springer, Heidelberg (2013)

  37. Sandri, D.: Sur l’approximation numérique des écoulements quasi-newtoniens dont la viscosité suit la loi puissance ou la loi de Carreau. RAIRO Modél. Math. Anal. Numér. 27(2), 131–155 (1993)

    MathSciNet  Google Scholar 

  38. Seregin, G.A., Shilkin, T.N.: Regularity of minimizers of some variational problems in plasticity theory. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 243 (1997). [no. Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funktsii. 28, 270–298, 342–343; translation in J. Math. Sci. New York 99(1), 969–988 (2000)]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic Breit.

Appendix A: Orlicz spaces

Appendix A: Orlicz spaces

The following definitions and results are standard in the theory of Orlicz spaces and can for example be found in [30]. A continuous, convex function \(\rho :[0,\infty ) \rightarrow [0,\infty )\) with \(\rho (0)=0\), and \(\lim _{t \rightarrow \infty } \rho (t) = \infty \) is called a \(\phi \)-function.

We say that \(\rho \) satisfies the \(\Delta _2\)–condition, if there exists \(c > 0\) such that for all \(t \ge 0\) holds \(\rho (2t) \le c\, \rho (t)\). By \(\Delta _2(\rho )\) we denote the smallest such constant. Since \(\rho (t) \le \rho (2t)\) the \(\Delta _2\)-condition is equivalent to \(\rho (2t) \sim \rho (t)\) uniformly in t. For a family \(\rho _\lambda \) of \(\rho \)-functions we define \(\Delta _2({\{{\rho _\lambda }\}}) := \sup _\lambda \Delta _2(\rho _\lambda )\). Note that if \(\Delta _2(\rho ) < \infty \) then \(\rho (t) \sim \rho (c\,t)\) uniformly in \(t\ge 0\) for any fixed \(c>0\). By \(L^\rho \) and \(W^{k,\rho }\), \(k\in \mathbb {N}_0\), we denote the classical Orlicz and Orlicz-Sobolev spaces, i.e. \(f \in L^\rho \) iff \(\int \rho ({|{f}|})\,dx < \infty \) and \(f \in W^{k,\rho }\) iff \( \nabla ^j f \in L^\rho \), \(0\le j\le k\).

A \(\phi \)-function \(\rho \) is called a N-function iff it is strictly increasing and convex with

$$\begin{aligned} \lim _{t\rightarrow 0}\frac{\rho (t)}{t}= \lim _{t\rightarrow \infty }\frac{t}{\rho (t)}=0. \end{aligned}$$

By \(\rho ^*\) we denote the conjugate N-function of \(\rho \), which is given by \(\rho ^*(t) = \sup _{s \ge 0} (st - \rho (s))\). Then \(\rho ^{**} = \rho \).

Lemma 6.1

(Young’s inequality) Let \(\rho \) be an N-function. Then for all \(s,t\ge 0\) we have

$$\begin{aligned} st \le \rho (s)+\rho ^*(t). \end{aligned}$$

If \(\Delta _2(\rho ,\rho ^*)< \infty \), then additionally for all \(\delta >0\)

$$\begin{aligned} st&\le \delta \,\rho (s)+c_\delta \,\rho ^*(t), \\ st&\le c_\delta \,\rho (s)+\delta \,\rho ^*(t), \\ \rho '(s)t&\le \delta \,\rho (s)+c_\delta \,\rho (t), \\ \rho '(s)t&\le \delta \,\rho (t)+c_\delta \,\rho (s), \end{aligned}$$

where \(c_\delta = c(\delta , \Delta _2({\{{\rho ,\rho ^*}\}}))\).

Definition 6.2

Let \(\rho \) be an N-function. We say that \(\rho \) is elliptic, if \(\rho \) is \(C^1\) on \([0,\infty )\) and \(C^2\) on \((0,\infty )\) and assume that

$$\begin{aligned} \rho '(t)&\sim t\,\rho ''(t), \end{aligned}$$
(6.1)

uniformly in \(t > 0\). The constants hidden in \(\sim \) are called the characteristics of \(\rho \).

Note that (6.1) is stronger than \(\Delta _2(\rho ,\rho ^*)<\infty \). In fact, the \(\Delta _2\)-constants can be estimated in terms of the characteristics of \(\rho \).

Associated to an elliptic N-function \(\rho \) we define the tensors

$$\begin{aligned} \mathbf{A}^\rho ({\varvec{\xi }})&:=\frac{\rho '({|{{\varvec{\xi }}}|})}{{|{{\varvec{\xi }}}|}}{\varvec{\xi }},\quad {\varvec{\xi }}\in \mathbb R^{n\times n} \\ \mathbf{F}^\rho ({\varvec{\xi }})&:=\sqrt{\frac{\rho '({|{{\varvec{\xi }}}|})}{{|{{\varvec{\xi }}}|}}}\,{\varvec{\xi }},\quad {\varvec{\xi }}\in \mathbb R^{n\times n}. \end{aligned}$$

We define the shifted N-function \(\rho _a\) for \(a\ge 0\) by

$$\begin{aligned} \rho _a(t)&:= \int \limits _0^t \frac{\rho '(a+\tau )}{a+\tau } \tau \,d\tau . \end{aligned}$$
(6.2)

The following auxiliary result can be found in [17, 21].

Lemma 6.3

For all \(a,b, t \ge 0\) we have

$$\begin{aligned} \rho _a(t)&\sim {\left\{ \begin{array}{ll} \rho ''(a) t^2 &{}\quad \text {if }\,\, t \lesssim a \\ \rho (t) &{}\quad \text {if }\,\, t \gtrsim a, \end{array}\right. }\\ (\rho _a)_b(t)&\sim \rho _{a+b}(t). \end{aligned}$$

Lemma 6.4

[17, Lemma 2.3] We have

$$\begin{aligned} \big ({\mathbf{A}^\rho }(\mathbf{P}) - {\mathbf{A}^\rho }(\mathbf{Q})\big ) \cdot \big (\mathbf{P}-\mathbf{Q}\big )&\sim {\big |{ \mathbf{F}^\rho (\mathbf{P}) - \mathbf{F}^\rho (\mathbf{Q})}\big |}^2 \\&\sim \rho _{{|{\mathbf{P}}|}}({|{\mathbf{P}- \mathbf{Q}}|}) \\&\sim \rho ''\big ( {|{\mathbf{P}}|} + {|{\mathbf{Q}}|} \big ){|{\mathbf{P}- \mathbf{Q}}|}^2, \end{aligned}$$

uniformly in \(\mathbf{P}, \mathbf{Q}\in \mathbb {R}^{n \times n}\). Moreover, uniformly in \(\mathbf{Q}\in \mathbb {R}^{n \times n}\),

$$\begin{aligned} \mathbf{A}^\rho (\mathbf{Q}) \cdot \mathbf{Q}&\sim {|{\mathbf{F}^\rho (\mathbf{Q})}|}^2\sim \rho ({|{\mathbf{Q}}|}) \\ {|{{\mathbf{A}^\rho }(\mathbf{P}) - {\mathbf{A}^\rho }(\mathbf{Q})}|}&\sim \big (\rho _{{|{\mathbf{P}}|}}\big )'({|{\mathbf{P}- \mathbf{Q}}|}). \end{aligned}$$

The constants depend only on the characteristics of \(\rho \).

Lemma 6.5

(Change of shift) Let \(\rho \) be an elliptic N-function. Then for each \(\delta >0\) there exists \(C_\delta \ge 1\) (only depending on \(\delta \) and the characteristics of \(\rho )\) such that

$$\begin{aligned} \rho _{{|{\mathbf{a}}|}}(t)&\le C_\delta \, \rho _{{|{\mathbf{b}}|}}(t) +\delta \, \rho _{{|{\mathbf{a}}|}}({|{\mathbf{a}- \mathbf{b}}|}), \\ (\rho _{{|{\mathbf{a}}|}})^*(t)&\le C_\delta \, (\rho _{{|{\mathbf{b}}|}})^*(t) +\delta \, \rho _{{|{\mathbf{a}}|}}({|{\mathbf{a}- \mathbf{b}}|}), \end{aligned}$$

for all \(\mathbf{a},\mathbf{b}\in \mathbb {R}^n\) and \(t\ge 0\).

The case \(\mathbf{a}=0\) or \(\mathbf{b}=0\) implies the following corollary.

Corollary 6.6

(Removal of shift) Let \(\rho \) be an elliptic N-function. Then for each \(\delta >0\) there exists \(C_\delta \ge 1\) (only depending on \(\delta \) and the characteristics of \(\rho )\) such that

$$\begin{aligned} \rho _{{|{\mathbf{a}}|}}(t)&\le C_\delta \, \rho (t) +\delta \, \rho ({|{\mathbf{a}}|}), \\ \rho (t)&\le C_\delta \, \rho _{{|{\mathbf{a}}|}}(t) +\delta \, \rho ({|{\mathbf{a}}|}), \end{aligned}$$

for all \(\mathbf{a}\in \mathbb {R}^n\) and \(t\ge 0\).

Lemma 6.7

Let \(\rho \) be an elliptic N-function. Then \((\rho _a)^*(t) \sim (\rho ^*)_{\rho '(a)}(t)\) uniformly in \(a,t \ge 0\). Moreover, for all \(\lambda \in [0,1]\) we have

$$\begin{aligned} \rho _a(\lambda a)&\sim \lambda ^2 \rho (a) \sim (\rho _a)^*(\lambda \rho '(a)). \end{aligned}$$

Lemma 6.8

Let \(\rho (t) := \int \nolimits _0^t (\kappa +s)^{q-2} s\,ds\) with \(q \in (1,\infty )\) and \(t\ge 0\). Then

$$\begin{aligned} \rho _a(\lambda t)&\le c\, \max {\{{\lambda ^q, \lambda ^2}\}} \rho (t), \\ (\rho _a)^*(\lambda t)&\le c\, \max {\{{\lambda ^{q'}, \lambda ^2}\}} \rho (t), \end{aligned}$$

uniformly in \(a,\lambda \ge 0\).

Remark 6.9

Let \(p\in \mathcal {P}(\Omega )\) with \(p^{-}>1\) and \(p^+<\infty \). The results above extend to the function \(\phi (x,t)=\int _0^t (\kappa +s)^{p(x)-2}s\,ds\) uniformly in \(x\in \Omega \), where the constants only depend on \(p^-\) and \(p^+\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berselli, L.C., Breit, D. & Diening, L. Convergence analysis for a finite element approximation of a steady model for electrorheological fluids. Numer. Math. 132, 657–689 (2016). https://doi.org/10.1007/s00211-015-0735-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0735-4

Mathematics Subject Classification

Navigation