Skip to main content
Log in

Interval bounds on the solutions of semi-explicit index-one DAEs. Part 2: computation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This article presents two methods for computing interval bounds on the solutions of nonlinear, semi-explicit, index-one differential-algebraic equations (DAEs). Part 1 presents theoretical developments, while Part 2 discusses implementation and numerical examples. The primary theoretical contributions are (1) an interval inclusion test for existence and uniqueness of a solution, and (2) sufficient conditions, in terms of differential inequalities, for two functions to describe componentwise upper and lower bounds on this solution, point-wise in the independent variable. The first proposed method applies these results sequentially in a two-phase algorithm analogous to validated integration methods for ordinary differential equations (ODEs). The second method unifies these steps to characterize bounds as the solutions of an auxiliary system of DAEs. Efficient implementations of both are described using interval computations and demonstrated on numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aubin, J.P.: Viability Theory. Birkhauser, Boston (1991)

    MATH  Google Scholar 

  2. Cohen, S.D., Hindmarsh, A.C.: CVODE, A Stiff/Nonstiff ODE Solver in C. Comput. Phys. 10(2), 138–143 (1996)

    Google Scholar 

  3. Doherty, M.F., Malone, M.F.: Conceptual design of distillation systems. McGraw-Hill, New York (2001)

    Google Scholar 

  4. Elliott, R.J., Lira, C.T.: Introductory chemical engineering thermodynamics. Prentice-Hall, Upper Saddle River (1999)

    Google Scholar 

  5. Facchinei, F., Pang, J.S.: Finite-dimensional variational inequalities and complementarity problems, vol. 1. Springer, New York (2003)

    Google Scholar 

  6. Griewank, A.: Automatic directional differentiation of nonsmooth composite functions. In: R. Durier, C. Michelot (eds.) Recent Developments in Optimization. Lecture Notes in Economics and Mathematical Systems, 429, 155–169 (1995)

  7. Griewank, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. SIAM, 3600 University City Science Center, Philadelphia, PA (2000)

  8. Hartman, P.: Ordinary differential equations, 2nd edn. SIAM, Philidelphia (2002)

    Book  MATH  Google Scholar 

  9. Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee, S.L., Serban, R., Shumaker, D.E., Woodward, C.S.: SUNDIALS, suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Software 31, 363–396 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hoefkens, J., Berz, M., Makino, K.: Computing validated solutions of implicit differential equations. Adv. Comput. Math. 19, 231–253 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Khan, K.A., Barton, P.I.: Evaluating an element of the Clarke generalized Jacobian of a piecewise differentiable function. In: Forth, S., Hovland, P., Phipps, E., Utke, J., Walther, A. (eds.) Recent Advances in Algorithmic Differentiation, pp. 115–125. Springer, Berlin

  12. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part I - convex underestimating problems. Math. Program. 10, 147–175 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  13. Munkres, J.R.: Analysis on Manifolds. Westview Press, Cambridge (1991)

    MATH  Google Scholar 

  14. Neher, M., Jackson, K.R., Nedialkov, N.S.: On Taylor Model Based Integration of ODEs. SIAM J. Numer. Anal. 45(1), 236–262 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  16. Rauh, A., Brill, M., Gunther, C.: A novel interval arithmetic approach for solving differential-algebraic equations with Valencia-IVP. Int. J. Appl. Math. Comput. Sci. 19(3), 381–397 (2009)

    Google Scholar 

  17. Scholtes, S.: Introduction to piecewise differentiable equations: Habilitation Thesis. University of Karlsruhe, Institut für Statistik und Mathematische Wirtschaftstheorie (1994)

  18. Scott, J.K., Barton, P.I.: Tight, efficient bounds on the solutions of chemical kinetics models. Comput. Chem. Eng. 34, 717–731 (2010)

    Article  Google Scholar 

  19. Scott, J.K., Barton, P.I.: Bounds on the reachable sets of nonlinear control systems. Automatica 49, 93–100 (2013)

    Google Scholar 

  20. Scott, J.K., Stuber, M.D., Barton, P.I.: Generalized McCormick relaxations. J. Glob. Optim. 51, 569–606 (2011). doi:10.1007/s10898-011-9664-7

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This paper is based on work funded by the National Science Foundation under grant CBET-0933095.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul I. Barton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, J.K., Barton, P.I. Interval bounds on the solutions of semi-explicit index-one DAEs. Part 2: computation. Numer. Math. 125, 27–60 (2013). https://doi.org/10.1007/s00211-013-0532-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0532-x

Mathematics Subject Classification (2000)

Navigation