Skip to main content
Log in

An efficient second order in time scheme for approximating long time statistical properties of the two dimensional Navier–Stokes equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We investigate the long time behavior of the following efficient second-order in time scheme for the 2D Navier–Stokes equations in a periodic box:

$$\begin{array}{ll}{\frac{3\omega^{n+1} - 4\omega^n + \omega^{n-1}}{2k} + \nabla^\perp(2\psi^n - \psi^{n-1}) \cdot \nabla(2\omega^n - \omega^{n-1})- \nu\Delta\omega^{n+1} = f^{n+1},} \\ {\quad -{\Delta} {\psi}^{n} = {\omega}^{n}.}\end{array}$$

The scheme is a combination of a 2nd-order in time backward-differentiation and a particular explicit Adams–Bashforth treatment of the advection term. Therefore only a linear constant coefficient Poisson solver is needed at each time step. We prove uniform in time bounds on this scheme in \({{\dot{L}^2,\, \dot{H}^1_{per}}}\) and \({{\dot{H}^2_{per}}}\) provided that the time-step is sufficiently small. These time uniform estimates further lead to the convergence of long time statistics (stationary statistical properties) of the scheme to that of the NSE itself at vanishing time-step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ascher U.M., Ruuth S.J., Wetton W.T.R.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Billingsley P.: Weak Convergence of Measures: Applications in Probability. SIAM, Philadelphia (1971)

    Book  MATH  Google Scholar 

  3. Canuto C., Hussaini M.Y., Quarteroni A., Zang T.: Spectral Methods in Fluid Dynamics. Springer, Berlin (1988)

    MATH  Google Scholar 

  4. Cheng W., Wang X.: A semi-implicit scheme for stationary statistical properties of the infinite Prandtl number model. SIAM J. Numer. Anal. 47(1), 250–270 (2008)

    Article  MathSciNet  Google Scholar 

  5. Chorin A.J.: Vorticity and Turbulence. Springer, New York (1994)

    MATH  Google Scholar 

  6. Constantin P., Foias C.: Navier–Stokes Equations. The University of Chicago Press, Chicago (1988)

    MATH  Google Scholar 

  7. Crouzeix M.: Une methode multipas implicite-explicite pour l’approximation des ’equations d’evolution paraboliques. Numer. Math. 35, 257–276 (1982)

    Article  MathSciNet  Google Scholar 

  8. Da Prato G., Zabczyk J.: Ergodicity for Infinite Dimensional Systems. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  9. E, W.: Stochastic hydrodynamics. Current Developments in Mathematics, 2000, pp. 109–147. International Press, Somerville (2001)

  10. Foias C., Jolly M., Kevrekidis I.G., Titi E.S.: Dissipativity of numerical schemes. Nonlinearity 4, 591–613 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Foias C., Jolly M., Kevrekidis I.G., Titi E.S.: On some dissipative fully discrete nonlinear Galerkin schemes for the Kuramoto–Ivashinsky equation. Phys. Lett. A 186, 87–96 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Foias C., Manley O., Rosa R., Temam R.: Navier–Stokes equations and turbulence. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  13. Foias C., Temam R.: Gevrey class regularity for the solutions of the Navier–Stokes equations. J. Funct. Anal. 97, 359–369 (1989)

    Article  MathSciNet  Google Scholar 

  14. Frisch U.: Turbulence: The Legacy of A.N. Kolmogorov. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  15. Geveci T.: On the convergence of a time discretization scheme for the Navier–Stokes equations. Math. Comput. 53, 43–53 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gottlieb D., Orszag S.A.: Numerical Analysis of Spectral Methods, Theory and Applications. SIAM, Philadelphia (1977)

    Book  MATH  Google Scholar 

  17. Gottlieb, S., Tone, F., Wang, C., Wang, X., Wirosoetisno, D.: Long time stability of a classical efficient scheme for two dimensional Navier–Stokes equations. SIAM J. Numer. Anal. 50(1) 126–150 (2012) . http://dx.doi.org/10.1137/110834901

    Google Scholar 

  18. Gottlieb, S., Wang, C.: High order long time stable schemes for 2D Navier–Stokes system in a periodic box. In preparation (2011)

  19. Hairer M., Mattingly J.C.: Spectral gaps in Wasserstein distances and the 2D stochastic Navier–Stokes equations. Ann. Probab. 36(6), 2050–2091 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hairer E., Wanner G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd edn. Springer, Berlin (2002)

    Google Scholar 

  21. Hale J.K., Lin X.B., Raugel G.: Upper semicontinuity of attractors for approximations of semigroups and partial differential equations. Math. Comput. 50, 89–123 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hill A.T., Süli E.: Upper semicontinuity of attractors for linear multistep methods approximating sectorial evolution equations. Math. Comput. 64(11), 1097–1122 (1995)

    Article  MATH  Google Scholar 

  23. Hill A.T., Süli E.: Approximation of the global attractor for the incompressible Navier–Stokes equations. IMA J. Numer. Anal. 20, 633–667 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jolly M., Kevrekidis I., Titi E.S.: Preserving dissipation in approximate inertial forms for the Kuramoto–Sivashinsky equation. J. Dyn. Differ. Equ. 3, 179–197 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ju N.: On the global stability of a temporal discretization scheme for the Navier–Stokes equations. IMA J. Numer. Anal. 22, 577–597 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Karniadakis G., Israeli M., Orszag S.: High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97, 414–443 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kim N.: Large friction limit and the inviscid limit of 2D Navier–Stokes equations under Navier friction condition. SIAM J. Math. Anal. 41(4), 1653–1663 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kozono H., Taniuchi Y.: Bilinear estimates in BMO and the Navier–Stokes equations. Math. Z. 235, 173–194 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Larsson S.: The long-time behavior of finite-element approximations of solutions to semilinear parabolic problems. SIAM J. Numer. Anal. 26(2), 348–365 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lasota A., Mackey M.C.: Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, 2nd edn. Springer, New York (1994)

    MATH  Google Scholar 

  31. Lax P.D.: Functional Analysis. Wiley, New York (2002)

    MATH  Google Scholar 

  32. Leimkuhler B., Reich S.: Simulating Hamiltonian Dynamics. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  33. Majda A.J., Wang X.: Nonlinear Dynamics and Statistical Theory for Basic Geophysical Flows. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  34. Marion, M., Temam, R.M.: Navier–Stokes equations: Theory and approximation. In: Handbook of Numerical Analysis, vol. VI, pp. 96–102 (1998)

  35. Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanics: Mechanics of Turbulence. English edn. updated, augmented and rev. by the authors. MIT Press, Cambridge (1975)

  36. Peyret R.: Spectral Methods for Incompressible Viscous Flow. Springer, New York (2002)

    MATH  Google Scholar 

  37. Shen J.: Convergence of approximate attractors for a fully discrete system for reaction-diffusion equations. Numer. Funct. Anal. Optim. 10(11&12), 1213–1234 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shen J.: Long time stabilities and convergences for the fully discrete nonlinear Galerkin methods. Appl. Anal. 38, 201–229 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sigurgeirsson H., Stuart A.M.: Statistics from computations. In: Devore, R., Iserles, A., Suli, E. (eds) Foundations of Computational Mathematics, pp. 323–344. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  40. Stuart A.M., Humphries A.R.: Dynamical Systems and Numerical Analysis. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  41. Tam C.K.W., Webb J.C.: Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comput. Phys. 107, 262–281 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  42. Temam R.: Sur l’approximation des solutions des équations de Navier–Stokes. C.R. Acad. Sci. Paris Serie A 262, 219–221 (1966)

    MathSciNet  MATH  Google Scholar 

  43. Temam, R.M.: Navier–Stokes equations and nonlinear functional analysis. In: CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1983)

  44. Temam R.M.: Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd edn. Springer, New York (1997)

    MATH  Google Scholar 

  45. Tone, F., Wang, X.: Approximation of the stationary statistical properties of the dynamical systems generated by the two-dimensional Rayleigh-Benard convection problem. Anal. Appl. (2010, accepted)

  46. Tone F., Wirosoetisno D.: On the long-time stability of the implicit Euler scheme for the two-dimensional Navier–Stokes equations. SIAM J. Numer. Anal. 44(1), 29–40 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  47. Tupper P.F.: Ergodicity and the numerical simulation of Hamiltonian systems. SIAM J. Appl. Dyn. Syst. 4(3), 563–587 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  48. Varah J.: Stability restrictions on second-order, three level finite difference schemes for parabolic equations. SIAM J. Numer. Anal. 17, 300–309 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  49. Vishik M.I., Fursikov A.V.: Mathematical Problems of Statistical Hydromechanics. Kluwer, Dordrecht (1988)

    MATH  Google Scholar 

  50. Wang X.: Stationary statistical properties of Rayleigh-Bénard convection at large Prandtl number. CPAM 61(6), 789–815 (2008)

    MATH  Google Scholar 

  51. Wang X.: Upper semi-continuity of stationary statistical properties of dissipative systems. Dedicated to Prof. Li Ta-Tsien on the occasion of his 70th birthday. Discrete Contin. Dyn. Syst. A 23(1/2), 521–540 (2009). doi:10.3934/dcds.2009.23.521

    Article  MATH  Google Scholar 

  52. Wang X.: Approximation of stationary statistical properties of dissipative dynamical systems: time discretization. Math. Comput. 79, 259–280 (2010)

    Article  MATH  Google Scholar 

  53. Wente H.C.: An existence theorem for surfaces of constant mean curvature. J. Math. Anal. Appl. 26, 318–344 (1960)

    Article  MathSciNet  Google Scholar 

  54. Yan Y.: Attractors and error estimates for discretizations of incompressible Navier–Stokes equations. SIAM J. Numer. Anal. 33(4), 1451–1472 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X. An efficient second order in time scheme for approximating long time statistical properties of the two dimensional Navier–Stokes equations. Numer. Math. 121, 753–779 (2012). https://doi.org/10.1007/s00211-012-0450-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-012-0450-3

Mathematics Subject Classification (2010)

Navigation