Skip to main content
Log in

An energy formula for fully nonlinear degenerate parabolic equations in one spatial dimension

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Energy (or Lyapunov) functions are used to prove stability of equilibria, or to indicate a gradient-like structure of a dynamical system. Matano constructed a Lyapunov function for quasilinear non-degenerate parabolic equations. We modify Matano’s method to construct an energy formula for fully nonlinear degenerate parabolic equations. We provide several examples of formulae, and in particular, a new energy candidate for the porous medium equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

We confirm that all relevant data are included in the article.

Notes

  1. Note time-evolution degeneracies can be transformed into singular diffusion, see [49, Problem 3.6].

  2. In the literature, this operator is called the p-Laplacian. However, in our notation \(p:=u_x\) and thus we replace the parameter p by \(\rho \) in the degenerate diffusion operator, i.e., \(\partial _\rho u:=(|u_x|^{\rho -2}u_x)_x\).

  3. For \(p_0= 0\) (i.e. \(p\equiv 0\) and \(g\equiv g_0\)), we obtain that \(L_{pp} = \exp (g_0)/(1 + p^2)^{\frac{3}{2}}\) for all \(n\in {\mathbb {N}}\). This yields \(E = \int _0^1 \sqrt{1+u_x^2} \, dx\), up to a multiplicative constant \(\exp (g_0)\), which is the perimeter of the curve; similar to the mean curvature flow with Hamiltonian forcing in Sect. 3.1.

  4. Note the characteristics (3.27) coincide with the one obtained through our construction, see (3.17). However, the equations for g given by (3.28) and (3.18) are different. This occurs since our Ansatz in (1.11) is different than Matano’s, which is \(L_{pp}=\exp (g)\).

  5. The diffusion given by \((|u|^{m-1}u)_{xx}=m|u|^{m-1}u_{xx}+m(m-1)|u|^{m-3}u u_x^2\) is a natural extension that takes sign-changing solutions into account, which is thereby called the signed PME in [49]. For the sake of simplicity, we proceed with the non-signed PME in the main text.

References

  1. Amann, H.: Parabolic evolution equations and nonlinear boundary conditions. J. Differ. Equ. 7(2), 201–269 (1988)

    Article  MathSciNet  Google Scholar 

  2. Aronson, D., Crandall, M., Peletier, L.: Stabilization of solutions of a degenerate nonlinear diffusion problem. Nonlinear Anal. T.M.A. 6, 1001–1022 (1982)

    Article  MathSciNet  Google Scholar 

  3. Arrieta, J., Rodriguez-Bernal, A., Souplet, P.: Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena. Ann. Scuola Norm. Sup. Pisa 5, 1–15 (2004)

    MathSciNet  Google Scholar 

  4. Attouchi, A.: Boundedness of global solutions of a p-Laplacian evolution equation with a nonlinear gradient term. Asymp. Anal. 91, 233–251 (2015)

    MathSciNet  Google Scholar 

  5. Babin, A.V., Vishik, M.I.: Attractors of Evolution Equations. Elsevier Sc. (1992)

  6. Bernis, F., Hulshof, J., Vázquez, J.L.: A very singular solution for the dual porous medium equation and the asymptotic behaviour of general solutions. J. Reine Angew. Math. (Crelle) 435, 1–31 (1993)

    MathSciNet  Google Scholar 

  7. Bögelein, V., Duzaar, F., Mingione, G.: The regularity of general parabolic systems with degenerate diffusion. Mem. American Math. Soc., vol. 221 (2013)

  8. Bonforte, M., Figalli, A.: The Cauchy–Dirichlet problem for the fast diffusion equation on bounded domains (2023). arXiv:2308.08394

  9. Carvalho, A.N., Cholewa, J., Dlotko, T.: Global attractors for problems with monotone operators. Boll. Uni. Matem. Ital. 8, 693–706 (1999)

    MathSciNet  Google Scholar 

  10. Carrillo, J.A., Jüngel, A., Markowich, P.A., Toscani, G., Unterreiter, A.: Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities. Monatshefte für Mathematik 133, 1–82 (2001)

    Article  MathSciNet  Google Scholar 

  11. Chen, C.-N.: Infinite time blow-up of solutions to a nonlinear parabolic problem. J. Differ. Equ. 139, 409–427 (1997)

    Article  MathSciNet  Google Scholar 

  12. Crandall, M., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, 1 (1992)

    Article  MathSciNet  Google Scholar 

  13. Diaz, G., Diaz, I.: Finite extinction time for a class of non-linear parabolic equations. Commun. PDE 4, 1213–1331 (1979)

    Article  Google Scholar 

  14. DiBenedetto, E.: Degenerate Parabolic Equations. Springer, New York (1993)

    Book  Google Scholar 

  15. DiBenedetto, E., Urbano, J.M., Vespri, V.: Chapter 3: Current issues on singular and degenerate evolution equations. Handbook of Diff. Eq.: Evol. Eq., vol. 1, pp. 169 – 286 (2002)

  16. Efendiev, M.: Attractors for degenerate parabolic type equations. Mathematical Surveys and Monographs, vol. 192. AMS (2013)

  17. Esteban, J.R., Vazquez, J.L.: On the equation of turbulent filtration in one-dimensional porous media. Nonlinear Anal. T.M.A. 10, 1303–1325 (1986)

    Article  MathSciNet  Google Scholar 

  18. Feireisl, E., Simondon, F.: Convergence for degenerate parabolic equations. J. Differ. Equ. 152, 439–466 (1999)

    Article  MathSciNet  Google Scholar 

  19. Fiedler, B., Grotta-Ragazzo, C., Rocha, C.: An explicit Lyapunov function for reflection symmetric parabolic partial differential equations on the circle. Russ. Math. Surv. 69, 27–42 (2014)

    Article  Google Scholar 

  20. Fiedler, B., Gedeon, T.: A Lyapunov function for tridiagonal competitive-cooperative systems. SIAM J. Math. Anal. 30(3), 469–478 (1999)

    Article  MathSciNet  Google Scholar 

  21. Fila, M., Sacks, P.: The transition from decay to blow-up in some reaction-diffusion-convection equations. In: Proc. 1st World Cong. Nonlin. Anal. ���92 (ed. V. Lakshmikantham). De Gruyter, pp. 1303–1325 (1996)

  22. Giacomelli, L., Moll, S., Petitta, F.: Nonlinear diffusion in transparent media: the resolvent equation. Adv. Calc. Var. 11, 405–432 (2018)

    Article  MathSciNet  Google Scholar 

  23. Hale, J.K.: Asymptotic Behavior of Dissipative Systems. Math. Surv., vol. 25. AMS, Providence (1988)

  24. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer, New York (1981)

    Book  Google Scholar 

  25. Hirsch, M.: Stability and convergence in strongly monotone dynamical systems. J. Reine Angew. Math. (Crelle) 383, 1–53 (1988)

    MathSciNet  Google Scholar 

  26. Iagar, R.G., Sánchez, A., Vázquez, J.L.: Radial equivalence for the two basic nonlinear degenerate diffusion equations. J. Math. Pures Appl. 89, 1–24 (2008)

    Article  MathSciNet  Google Scholar 

  27. Kalashnikov, A.: Some problems of the qualitative theory of nonlinear degenerate second-order parabolic equations. Russ. Math. Surv. 42, 169–222 (1987)

    Article  Google Scholar 

  28. Ladyzhenskaya, O.: Attractors for Semi-groups and Evolution Equations. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  29. Lappicy, P.: Sturm attractors for quasilinear parabolic equations with singular coefficients. J. Dyn. Differ. Equ. 32, 359–390 (2020)

    Article  MathSciNet  Google Scholar 

  30. Lappicy, P.: Sturm attractors for fully nonlinear parabolic equations. Rev. Mat. Complut. 36, 725–747 (2023)

    Article  MathSciNet  Google Scholar 

  31. Lappicy, P., Fiedler, B.: A Lyapunov function for fully nonlinear parabolic equations in one spatial variable. São Paulo J. Math. Sci. 13, 283–291 (2019)

    Article  MathSciNet  Google Scholar 

  32. Lappicy, P., Pimentel, J.: Unbounded Sturm attractors for quasilinear equations. arXiv:1809.08971

  33. Laurençot, P.: Convergence to steady states for a one-dimensional viscous Hamilton–Jacobi equation with Dirichlet boundary conditions. Pac. J. Math. 230, 347–364 (2007)

    Article  MathSciNet  Google Scholar 

  34. Lunardi, A.: On a class of fully nonlinear parabolic equations. Commun. PDE 16, 145–172 (1991)

    Article  MathSciNet  Google Scholar 

  35. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Springer, Basel (1995)

    Book  Google Scholar 

  36. Marquardt, T.: Inverse mean curvature flow for star-shaped hypersurfaces evolving in a cone. J. Geom. Anal. 23, 1303–1313 (2013)

    Article  MathSciNet  Google Scholar 

  37. Marquardt, T.: Weak solutions of inverse mean curvature flow for hypersurfaces with boundary. J. Reine Angew. Math. 728, 237–261 (2017)

    Article  MathSciNet  Google Scholar 

  38. Matano, H.: Strong comparison principle in nonlinear parabolic equations. In: Boccardo, L., Tesei, A. (eds.) Nonlinear Parabolic Equations: Qualitative Properties of Solutions, Pitman Res. Notes in Math., vol. 149, pp. 148–155 (1987)

  39. Matano, H.: Asymptotic behavior of solutions of semilinear heat equations on \(S^1\). In: Ni, W.-M., Peletier, L.A., Serrin, J. (eds.) Nonlinear Diffusion Equations and Their Equilibrium States II, pp. 139–162 (1988)

  40. Poláčik, P.: Convergence in smooth strongly monotone flows defined by semilinear parabolic equations. J. Differ. Equ. 79, 89–110 (1989)

    Article  MathSciNet  Google Scholar 

  41. Stinner, C.: Convergence to steady states in a viscous Hamilton-Jacobi equation with degenerate diffusion. J. Differ. Equ. 248, 209–228 (2010)

    Article  MathSciNet  Google Scholar 

  42. Smith, H., Thieme, H.: Convergence for strongly order-preserving semiflows. SIAM J. Math. Anal. 22, 1081–1101 (1991)

    Article  MathSciNet  Google Scholar 

  43. Smith, H.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. AMS Math. Surveys and Monographs, vol. 41 (1995)

  44. Teixeira, E., Urbano, J.M.: A geometric tangential approach to sharp regularity for degenerate evolution equations. Anal. PDE 7, 733–744 (2014)

    Article  MathSciNet  Google Scholar 

  45. Trudinger, N.: Pointwise estimates and quasilinear parabolic equations. Commun. Pure Appl. Math. XXI, 205–226 (1968)

  46. Uraltseva, N., Ladyzhenskaya, O., Solonnikov, V.A.: Linear and Quasi-linear Equations of Parabolic Type. American Mathematical Society (1968)

  47. Vázquez, J.L., Gerbi, S., Galaktionov, V.A.: Quenching for a one-dimensional fully nonlinear parabolic equation in detonation theory. SIAM J. Appl. Math. 61(4), 1253–1285 (2001)

    Article  MathSciNet  Google Scholar 

  48. Vázquez, J.L.: The Dirichlet problem for the porous medium equation in bounded domains. Asymptotic behavior. Monats. Math. 142, 81–111 (2004)

    Article  MathSciNet  Google Scholar 

  49. Vázquez, J.L.: The Porous Medium Equation: Mathematical Theory. Oxford Mathematical Monographs (2006)

  50. Zelenyak, T.I.: Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable. Differ. Uravn. 4, 34–45 (1968)

    MathSciNet  Google Scholar 

  51. Zhang, Z., Li, Y.: Boundedness of global solutions for a heat equation with exponential gradient source. Abstr. Appl. Anal. 4, 1–10 (2012)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful for the suggestions of Jia-Yuan Dai that significantly improved our paper. PL was firstly supported by FAPESP, 17/07882-0, and later on by Marie Skłodowska-Curie Actions, UNA4CAREER H2020 Cofund, 847635, with the project DYNCOSMOS. EB was firstly supported by CNPq, 135896/2020-7, and later on by FAPESP, 23/07941-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillipo Lappicy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lappicy, P., Beatriz, E. An energy formula for fully nonlinear degenerate parabolic equations in one spatial dimension. Math. Ann. 389, 4125–4147 (2024). https://doi.org/10.1007/s00208-023-02740-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-023-02740-5

Mathematics Subject Classification

Navigation