Skip to main content
Log in

Hydrodynamic Limit of the Incompressible Navier–Stokes–Fourier–Maxwell System with Ohm’s Law from the Vlasov–Maxwell–Boltzmann System: Hilbert Expansion Approach

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We prove a global-in-time limit from the two-species Vlasov–Maxwell–Boltzmann system with a cutoff hard potential collision kernel to the two-fluid incompressible Navier–Stokes–Fourier–Maxwell system with Ohm’s law. Besides the techniques developed for the classical solutions to the Vlasov–Maxwell–Boltzmann equations in the past years, such as the nonlinear energy method and micro–macro decomposition are employed, in this paper, key roles are played by the decay properties of both the electric field and the wave equation with linear damping of the divergence free magnetic field. This is a companion paper of Jiang and Luo (Ann PDE, 8(1), Paper No. 4, 126, 2022) in which Hilbert expansion was not employed but only the hard sphere case was considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility

This manuscript has no associated data.

References

  1. Arsénio, D., Ibrahim, S., Masmoudi, N.: A derivation of the magnetohydrodynamic system from Navier–Stokes–Maxwell systems. Arch. Ration. Mech. Anal. 216(3), 767–812, 2015

    Article  MathSciNet  MATH  Google Scholar 

  2. Arsénio, D., Saint-Raymond, L.: Compactness in kinetic transport equations and hypoellipticity. J. Funct. Anal. 261(10), 3044–3098, 2011

    Article  MathSciNet  MATH  Google Scholar 

  3. Arsénio, D., Saint-Raymond, L.: From the Vlasov–Maxwell–Boltzmann system to incompressible viscous electro-magneto-hydrodynamics, vol. 1. EMS Monographs in Mathematics. European Mathematical Society (EMS), Zürich (2019)

  4. Bardos, C., Golse, F., Levermore, C. D.: Fluid dynamic limits of kinetic equations. II. Convergence proofs for the boltzmann equation. Commun. Pure Appl. Math.46, 667–753 (1993)

  5. Biskamp,D.: Nonlinear Magnetohydrodynamics. Cambridge Monographs on Plasma Physics, 1. Cambridge University Press, Cambridge (1993)

  6. Davidson, P.A.: An Introduction to Magnetohydrodynamics. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2001)

  7. DiPerna, R., Lions, P.-L.: Global weak solutions of Vlasov–Maxwell systems. Commun. Pure Appl. Math. 42(6), 729–757, 1989

    Article  MathSciNet  MATH  Google Scholar 

  8. DiPerna, R., Lions, P.-L.: On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. Math. (2) 130, no. 2, 321–366 (1989)

  9. Duan, R.J., Liu, S.Q., Yang, T., Zhao, H.J.: Stability of the nonrelativistic Vlasov–Maxwell–Boltzmann system for angular non-cutoff potentials. Kinet. Relat. Models 6(1), 159–204, 2013

    Article  MathSciNet  MATH  Google Scholar 

  10. Duan,R-J., Lei, Y-J., Yang, T., Zhao, H.J.: The Vlasov–Maxwell–Boltzmann system near Maxwellians in the whole space with very soft potentials. Commun. Math. Phys. 351(1), 95–153 (2017)

  11. Fan, Y.Z., Lei, Y.J., Liu, S.Q., Zhao, H.J.: The non-cutoff Vlasov–Maxwell–Boltzmann system with weak angular singularity. Sci. China Math. 61(1), 111–136, 2018

    Article  MathSciNet  MATH  Google Scholar 

  12. Germain, P., Ibrahim, S., Masmoudi, N.: Well-posedness of the Navier–Stokes–Maxwell equations. Proc. R. Soc. Edinb. Sect. A 144(1), 71–86, 2014

    Article  MathSciNet  MATH  Google Scholar 

  13. Glassey, R.T.: The Cauchy Problem in Kinetic Theory. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1996)

    Book  MATH  Google Scholar 

  14. Golse, F., Saint-Raymond, L.: The Navier–Stokes limit of the Boltzmann equation for bounded collision kernels. Invent. Math. 155(1), 81–161, 2004

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Golse, F., Saint-Raymond, L.: The incompressible Navier–Stokes limit of the Boltzmann equation for hard cutoff potentials. J. Math. Pures Appl. (9) 91(5), 508–552 (2009)

  16. Guo, Y.: The Vlasov–Maxwell–Boltzmann system near Maxwellians. Invent. Math. 153(3), 593–630, 2003

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Guo, Y.: Boltzmann diffusive limit beyond the Navier–Stokes approximation. Commun. Pure Appl. Math. 59(5), 626–687, 2006

    Article  MathSciNet  MATH  Google Scholar 

  18. Ibrahim, S., Keraani, S.: Global small solutions for the Navier–Stokes–Maxwell system. SIAM J. Math. Anal. 43(5), 2275–2295, 2011

    Article  MathSciNet  MATH  Google Scholar 

  19. Ibrahim, S., Yoneda, T.: Local solvability and loss of smoothness of the Navier–Stokes–Maxwell equations with large initial data. J. Math. Anal. Appl. 396(2), 555–561, 2012

    Article  MathSciNet  MATH  Google Scholar 

  20. Jang, J.: Vlasov–Maxwell–Boltzmann diffusive limit. Arch. Ration. Mech. Anal. 194(2), 531–584, 2009

    Article  MathSciNet  MATH  Google Scholar 

  21. Jang, J., Masmoudi, N.: Derivation of Ohm’s law from the kinetic equations. SIAM J. Math. Anal. 44(5), 3649–3669, 2012

    Article  MathSciNet  MATH  Google Scholar 

  22. Jiang, N., Luo, Y.-L.: Global classical solutions to the two-fluid incompressible Navier–Stokes–Maxwell system with Ohm’s law. Commun. Math. Sci. 16(2), 561–578, 2018

    Article  MathSciNet  MATH  Google Scholar 

  23. Jiang, N., Luo, Y.-L.: From Vlasov–Maxwell–Boltzmann system to two-fluid incompressible Navier–Stokes–Fourier–Maxwell system with Ohm’s law: convergence for classical solutions. Ann. PDE 8(1), Paper No. 4, 126 pp (2022)

  24. Jiang, N., Masmoudi, N.: Boundary layers and incompressible Navier–Stokes–Fourier limit of the Boltzmann equation in bounded domain I. Commun. Pure Appl. Math. 70(1), 90–171, 2017

    Article  MathSciNet  MATH  Google Scholar 

  25. Jiang, N., Xu, C.-J., Zhao, H.J.: Incompressible Navier–Stokes–Fourier limit from the Boltzmann equation: classical solutions. Indiana Univ. Math. J. 67(5), 1817–1855, 2018

    Article  MathSciNet  MATH  Google Scholar 

  26. Lei, Y.J., Zhao, H.J.: The Vlasov–Maxwell–Boltzmann system with a uniform ionic background near Maxwellians. J. Differ. Equ. 260(3), 2830–2897, 2016

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Levermore, C.D., Sun, W.: Compactness of the gain parts of the linearized Boltzmann operator with weakly cutoff kernels. Kinet. Relat. Models 3(2), 335–351, 2010

    Article  MathSciNet  MATH  Google Scholar 

  28. Lions, P.-L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications. I, II. J. Math. Kyoto Univ. 34(2), 391–427, 429–461 (1994)

  29. Lions, P.-L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications. III. J. Math. Kyoto Univ. 34(3), 539–584, 1994

    MathSciNet  MATH  Google Scholar 

  30. Lions, P.-L.: Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models. Oxford Lecture Series in Mathematics and its Applications, 3. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1996)

  31. Masmoudi, N.: Global well posedness for the Maxwell–Navier–Stokes system in 2D. J. Math. Pures Appl. (9) 93(6), 559–571 (2010)

  32. Masmoudi, N., Saint-Raymond, L.: From the Boltzmann equation to the Stokes–Fourier system in a bounded domain. Commun. Pure Appl. Math. 56(9), 1263–1293, 2003

    Article  MathSciNet  MATH  Google Scholar 

  33. Strain, R.M., Guo, Y.: Exponential decay for soft potentials near Maxwellian. Arch. Ration. Mech. Anal. 187(2), 287–339, 2008

    Article  MathSciNet  MATH  Google Scholar 

  34. Xiao, Q.-H., Xiong, L.-J., Zhao, H.-J.: The Vlasov–Poisson–Boltzmann system with angular cutoff for soft potentials. J. Differ. Equ. 255(6), 1196–1232, 2013

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author N. Jiang is supported by grants from the National NSFC under contract Nos. 11971360 and 12221001 and the Strategic Priority Research Program of Chinese Academy of Sciences, Grant No. XDA25010404. Y.-L. Luo is supported by grants from the National Natural Science Foundation of China under contract No. 12201220, the Guang Dong Basic and Applied Basic Research Foundation under contract No. 2021A1515110210, and the Science and Technology Program of Guangzhou, China under the contract No. 202201010497. T.-F. Zhang is supported by grants from the National Natural Science Foundation of China under contract Nos. 11701534, and 11871203. The authors would like to thank the anonymous referees for careful reading and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teng-Fei Zhang.

Ethics declarations

Conflict of interest

None.

Additional information

Communicated by N. Masmoudi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Estimates on \((\rho _1, u_1, \theta _1, E_1, B_1)\): Proof of Lemma 3.5

Appendix A: Estimates on \((\rho _1, u_1, \theta _1, E_1, B_1)\): Proof of Lemma 3.5

This section aims to derive the energy bounds of the linear Maxwell equations (2.43)–(2.44) with initial data (1.12), namely, it aims to prove Lemma 3.5.

Proof of Lemma 3.5

The proof will be divided into two steps.

Step 1. Estimates on \((\rho _1, u_1, \theta _1)\).

We first prove the bound (3.20) of \( u_1\). Recalling the relations (2.44), one sees that

$$\begin{aligned} \begin{aligned} u_1 (t,x) = \nabla _x \phi (t,x) , \ \Delta _x \phi = \partial _t \theta _0 , \int _{{\mathbb {T}^3}} \phi \mathop {}\!\textrm{d}x = 0 . \end{aligned} \end{aligned}$$

The standard elliptic theory implies \(\Vert \phi (t,\cdot )\Vert _{H_x^{M+2}} \lesssim \Vert \partial _t \theta _0(t,\cdot ) \Vert _{H_x^M}\), provided that \(\partial _t \theta _0(t,\cdot ) \in {H_x^M}\). Hence, it follows from the third equation of the NSMF system (2.29) that, for \(M \ge 1\),

$$\begin{aligned} \Vert u_1 \Vert _{H^{M+1}_x}= & {} \Vert \nabla _x \phi \Vert _{H^{M+1}_x}(t) \lesssim \Vert \partial _t \theta _0(t,\cdot ) \Vert _{H_x^M} \nonumber \\= & {} \Vert \kappa \Delta _x \theta _0 - u_0 \cdot \nabla _x \theta _0\Vert _{H^M_x} \nonumber \\\lesssim & {} \Vert \nabla _x \theta _0\Vert _{H^{M+1}_x} + \Vert u_0\Vert _{H^M_x} \Vert \nabla _x \theta _0\Vert _{H^M_x} . \end{aligned}$$
(5.137)

Then, from the definitions of \(\mathcal {E}_{0,M+1} (t)\) and \(\mathcal {D}_{0,M+1} (t) \) in (3.10) and (3.11) with \(s = M+1\), the inequality (3.20) holds.

We next derive the inequality (3.21). By (2.44), \(\rho _1\) and \(\theta _1\) satisfy

$$\begin{aligned} \begin{aligned} \rho _1 = \theta _1 , \ \Delta _x \rho _1 = \tfrac{1}{6} \Delta _x |u_0|^2 - \tfrac{1}{2} \textrm{div}_x ( u_0 \cdot \nabla _x u_0 - \tfrac{1}{2} j_0 \times B_0) , \ \int _{{\mathbb {T}^3}} \rho _1 \mathop {}\!\textrm{d}x = 0 . \end{aligned} \end{aligned}$$

Then, together with the last third equation of the NSMF system (2.29), the elliptic theory yields

$$\begin{aligned} \Vert \rho _1 \Vert _{H^{M+1}_x} = \Vert \theta _1 \Vert _{H^{M+1}_x} \lesssim&\Vert \tfrac{1}{6} \Delta _x |u_0|^2 - \tfrac{1}{2} \textrm{div}_x ( u_0 \cdot \nabla _x u_0 - \tfrac{1}{2} j_0 \times B_0 ) \Vert _{H_x^{M-1}} \nonumber \\ \lesssim&\big ( \Vert \nabla _x u_0 \Vert _{H_x^{M+1}} + \Vert \nabla _x n_0 \Vert _{H_x^{M+1}}\nonumber \\&\quad + \Vert E_0 \Vert _{H_x^{M+1}} \big ) \big ( \Vert u_0 \Vert _{H_x^{M+1}} + \Vert B_0 \Vert _{H_x^{M+1}} \big ) \nonumber \\&\quad + \big ( \Vert \nabla _x u_0 \Vert _{H_x^{M+1}} + \Vert n_0 \Vert _{H_x^{M+1}} \big ) \nonumber \\&\quad \big ( \Vert u_0 \Vert ^2_{H_x^{M+1}} + \Vert B_0 \Vert ^2_{H_x^{M+1}} \big ) \,. \end{aligned}$$
(5.138)

Thus, the inequality (3.21) follows from the definition of \(\mathcal {E}_{0,M+1} (t) \) and \(\mathcal {D}_{0,M+1} (t) \) in (3.10) and (3.11), respectively.

Step 2. Estimates on \((E_1, B_1)\).

It remains to derive the inequalities (3.22)–(3.23). The key point is to seek some essential decay structures. In (2.43), denote by \(j_1 = u_2^+ - u_2^-\).

From applying \(\textrm{div}_x\) to the first equation of (2.43) and using \(\textrm{div}_x E_1 = n_1\), it follows that

$$\begin{aligned} \partial _t n_1 - \tfrac{1}{2}\sigma \Delta _x n_1 + \sigma n_1 = - \textrm{div}_x j_1. \end{aligned}$$
(5.139)

Moreover, from taking the time derivative on the \( B_1\)-equation in (2.43),

$$\begin{aligned} \partial _{tt} B_1 + \nabla _x \times (\nabla _x \times B_1) - \sigma \nabla _x \times E_1 = \nabla _x \times j_1 \,. \end{aligned}$$

Noticing that \(\textrm{div}_x B_1 = 0\) yields \(\nabla _x \times (\nabla _x B_1) = - \Delta _x B_1\), one has

$$\begin{aligned} \partial _{tt} B_1 - \Delta _x B_1 + \sigma \partial _t B_1 = \nabla _x \times j_1 \,, \end{aligned}$$
(A.1)

which possesses a decay effect \(\sigma \partial _t B_1\).

Then, we turn to focus on the system (2.43), (A.3) and (A.4). For all \(|m| \le M\), applying \(\partial ^m\) to the first and second equations of (2.43), and then taking \(L^2_x\)-inner product with \(\partial ^m E_1\) and \(\partial ^m B_1\), respectively, one infers that

$$\begin{aligned}&\tfrac{1}{2} \tfrac{\mathop {}\!\textrm{d}}{\mathop {}\!\textrm{d}t} \big ( \Vert \partial ^m E_1 \Vert ^2_{L^2_x} + \Vert \partial ^m B_1 \Vert ^2_{L^2_x} \big ) + \sigma \Vert \partial ^m E_1 \Vert ^2_{L^2_x} + \tfrac{1}{2} \sigma \Vert \partial ^m n_1 \Vert ^2_{L^2_x} \\&\qquad = - \int _{{\mathbb {T}^3}} \partial ^m j_1 \cdot \partial ^m E_1 \mathop {}\!\textrm{d}x \,, \end{aligned}$$

where the cancellation relation \(\int _{\mathbb {T}^3} (\nabla _x \times \partial ^m E_1 ) \cdot \partial ^m B_1 \mathop {}\!\textrm{d}x = \int _{\mathbb {T}^3} ( \nabla _x \times \partial ^m B_1 ) \cdot \partial ^m E_1 \mathop {}\!\textrm{d}x \) and the third equation of (2.43), i.e., \(\textrm{div}_x E_1 = n_1\) have been used. Then, summing up for \(|m| \le M\) implies that

$$\begin{aligned}&\tfrac{1}{2} \tfrac{\mathop {}\!\textrm{d}}{\mathop {}\!\textrm{d}t} \big ( \Vert E_1 \Vert ^2_{H^M_x} + \Vert B_1 \Vert ^2_{H^M_x} \big ) + \sigma \Vert E_1 \Vert ^2_{H^M_x} + \tfrac{1}{2} \sigma \Vert n_1 \Vert ^2_{H^M_x}\\&\qquad = - \sum _{|m| \le M} \int _{\mathbb {T}^3} \partial ^m j_1 \cdot \partial ^m E_1 \mathop {}\!\textrm{d}x \,. \end{aligned}$$
(A.2)

Performing the similar procedure as above to the equation (A.3), one has that

$$\begin{aligned} \tfrac{1}{2} \tfrac{\mathop {}\!\textrm{d}}{\mathop {}\!\textrm{d}t} \Vert n_1 \Vert ^2_{H^M_x} + \sigma \Vert n_1 \Vert ^2_{H^M_x} + \tfrac{1}{2} \sigma \Vert \nabla _x n_1 \Vert ^2_{H^M_x} = \sum _{|m| \le M} \int _{\mathbb {T}^3} \partial ^m j_1 \cdot \nabla _x \partial ^m n_1 \mathop {}\!\textrm{d}x \,. \end{aligned}$$
(A.3)

For the equation (A.4), from taking the operator \(\partial ^m\), multiplying by \(\partial _t \partial ^m B_1\), integrating by parts over \(x \in \mathbb {T}^3\) and summing up for \(|m| \le M\), it follows that

$$\begin{aligned}&\tfrac{1}{2} \tfrac{\mathop {}\!\textrm{d}}{\mathop {}\!\textrm{d}t} \big ( \Vert \partial _t B_1 \Vert ^2_{H^M_x} + \Vert \nabla _x B_1 \Vert ^2_{H^M_x} \big ) + \sigma \Vert \partial _t \partial ^m B_1 \Vert ^2_{H^M_x} \nonumber \\&\quad = \sum _{|m| \le M} \int _{\mathbb {T}^3} ( \nabla _x \times \partial ^m j_1 ) \cdot \partial _t \partial ^m B_1 \mathop {}\!\textrm{d}x \,. \end{aligned}$$
(A.4)

Furthermore, if one multiplies by \(\partial ^m B_1\) instead of \(\partial _t \partial ^m B_1\) in the arguments of (A.8), it holds that

$$\begin{aligned}&\tfrac{1}{2} \tfrac{\mathop {}\!\textrm{d}}{\mathop {}\!\textrm{d}t} \big ( \Vert \partial _t B_1 + B_1 \Vert ^2_{H^M_x} - \Vert \partial _t B_1 \Vert ^2_{H^M_x} - ( 1 - \sigma ) \Vert B_1 \Vert ^2_{H^M_x} \big ) - \Vert \partial _t B_1 \Vert ^2_{H^M_x}+ \Vert \nabla _x B_1 \Vert ^2_{H^M_x} \nonumber \\&\quad = \sum _{ |m| \le M} \int _{\mathbb {T}^3} \partial ^m j_1 \cdot ( \nabla _x \times \partial ^m B_1) \mathop {}\!\textrm{d}x \,, \end{aligned}$$
(A.5)

where the equality \(( \nabla _x \times \partial ^m j_1) \cdot \partial ^m B_1 = \textrm{div}_x ( \partial ^m j_1 \times \partial ^m B_1 ) + \partial ^m j_1 \cdot ( \nabla _x \times \partial ^m B_1)\) has been utilized.

Choosing a positive constant \(\delta = \tfrac{1}{2} \min \{ 1,\sigma \} \in ( 0, \tfrac{1}{2} ] \), multiplying equality (A.9) by \(\delta \), and adding the resultant to the relations (A.5), (A.7) and (A.8), one has that

$$\begin{aligned}&\tfrac{1}{2} \tfrac{\mathop {}\!\textrm{d}}{\mathop {}\!\textrm{d}t} \big ( \Vert E_1 \Vert ^2_{H^M_x} + \Vert n_1 \Vert ^2_{H^M_x} + ( 1 - \delta + \delta \sigma ) \Vert B_1 \Vert ^2_{H^M_x} + \Vert \nabla _x B_1 \Vert ^2_{H^M_x} \nonumber \\&\qquad + ( 1 - \delta ) \Vert \partial _t B_1 \Vert ^2_{H^M_x} + \delta \Vert \partial _t B_1 + B_1 \Vert ^2_{H^M_x} \big ) \nonumber \\&\qquad + ( \sigma - \delta ) \Vert \partial _t B_1 \Vert ^2_{H^M_x} + \delta \Vert \nabla _x B_1 \Vert ^2_{H^M_x} + \sigma \Vert E_1 \Vert ^2_{H^M_x}\nonumber \\&\qquad + \tfrac{1}{2} \sigma \Vert \nabla _x n_1 \Vert ^2_{H^M_x} + \tfrac{3}{2} \sigma \Vert n_1 \Vert ^2_{H^M_x} \nonumber \\&\quad = \sum _{|m| \le M} \int _{\mathbb {T}^3} [ \partial ^m j_1 \cdot ( \nabla _x \partial ^m n_1 - \partial ^m n_1 + \delta \nabla _x \times \partial ^m B_1 )\nonumber \\&\qquad + ( \nabla _x \times \partial ^m j_1 ) \cdot \partial _t \partial ^m B_1 ] \mathop {}\!\textrm{d}x \nonumber \\&\quad \le \tfrac{\sigma }{2} \Vert n_1 \Vert ^2_{H^M_x} + \tfrac{\sigma }{4} \Vert \nabla _x n_1 \Vert ^2_{H^M_x} + \tfrac{\delta }{2} \Vert \nabla _x B_1 \Vert ^2_{H^M_x} + \tfrac{ \sigma - \delta }{2} \Vert \partial _t B_1 \Vert ^2_{H^M_x}\nonumber \\&\qquad + C \Vert j_1 \Vert ^2_{H^M_x} + C \Vert \nabla _x \times j_1 \Vert ^2_{H^M_x} \,, \end{aligned}$$
(A.6)

where we have used the Hölder inequality in the last line.

Recalling the expression of \(j_1 = u_2^+ - u_2^-\) in (2.43) and the fact \(\nabla _x \times (\nabla _x n_1) = 0\), it follows from the Sobolev embedding theory that

$$\begin{aligned} \Vert j_1 \Vert ^2_{H^M_x} + \Vert \nabla _x \times j_1 \Vert ^2_{H^M_x}&\le \Vert u_1 \Vert ^2_{H^{M+1}_x} + C \Vert B_0 \Vert ^2_{H^{M+1}_x} \Vert u_1 \Vert ^2_{H^{M+1}_x} \\&\qquad + C \sum \Vert \Gamma _0^- \Vert ^2_{H^{M+1}_x} \\&\quad + C ( \Vert u_0 \Vert ^2_{H^{M+1}_x} + \Vert \theta _0 \Vert ^2_{H^{M+1}_x} ) ( \Vert n_1 \Vert ^2_{H^M_x}\\&\quad + \Vert \nabla _x n_1 \Vert ^2_{H^M_x} + \Vert \nabla _x B_1 \Vert ^2_{H^M_x} ) \,, \end{aligned}$$

where Poincaré’s inequality \(\Vert B_1 \Vert _{L^2_x} \le C \Vert \nabla _x B_1 \Vert _{L^2_x}\) has been used. Recalling the definition of \(\Gamma _0^-\) in (2.41), one can deduce from the Sobolev embedding theory that

$$\begin{aligned} \sum \Vert \Gamma _0^-\Vert ^2_{H^{M+1}_x}&\lesssim \Vert \nabla _x u_0 \Vert ^2_{H^{M+2}_x} + \Vert \nabla _x \theta _0 \Vert ^2_{H^{M+2}_x} + \Vert E_0 \Vert ^2_{H^{M+2}_x} \\&\qquad + \big ( \Vert \nabla _x n_0 \Vert ^2_{H^{M+2}_x} + \Vert \nabla _x \theta _0 \Vert ^2_{H^{M+2}_x} + \Vert E_0 \Vert ^2_{H^{M+2}_x} \big ) \\&\qquad \times \big ( \Vert n_0 \Vert ^2_{H^{M+2}_x} + \Vert \theta _0 \Vert ^2_{H^{M+2}_x} + \Vert u_0 \Vert ^2_{H^{M+2}_x} + \Vert B_0 \Vert ^2_{H^{M+2}_x} \big ) \\&\qquad + ( \Vert n_0 \Vert ^2_{H^{M+2}_x} + \Vert \nabla _x u_0 \Vert ^2_{H^{M+2}_x})\\&\qquad \cdot ( \Vert \theta _0 \Vert ^2_{H^{M+2}_x} + \Vert u_0 \Vert ^2_{H^{M+2}_x} + \Vert B_0 \Vert ^2_{H^{M+2}_x} ) \\&\lesssim \mathcal {D}_{0,M+2} (t) + \mathcal {E}_{0,M+2} (t) \big ( 1 + \mathcal {E}_{0,M+2} (t) \big ) \mathcal {D}_{0,M+2} (t) \,, \end{aligned}$$

where Ohm’s law \(j_0 = n_0 u_0 + \sigma (-\tfrac{1}{2} \nabla _x n_0 + E_0 + u_0 \times B_0) \) in (2.29) has been used. Therefore,

$$\begin{aligned}&\Vert j_1 \Vert ^2_{H^M_x} + \Vert \nabla _x \times j_1 \Vert ^2_{H^M_x}\nonumber \\&\qquad \lesssim \big ( 1 + \mathcal {E}_{0,M+2} (t) \big ) \Vert u_1 \Vert ^2_{H^{M+1}_x} + \big ( 1 + \mathcal {E}_{0,M+2} (t) \big )^2 \mathcal {D}_{0,M+2} (t) \nonumber \\&\quad \qquad + \mathcal {E}_{0,M+2} (t) \big ( \Vert n_1 \Vert ^2_{H^M_x} + \Vert \nabla _x n_1 \Vert ^2_{H^M_x} + \Vert \nabla _x B_1 \Vert ^2_{H^{M}_x} \big ) \,. \end{aligned}$$
(A.7)

Plugging the inequality (A.11) into (A.10) implies that

$$\begin{aligned}&\tfrac{1}{2} \tfrac{\mathop {}\!\textrm{d}}{\mathop {}\!\textrm{d}t} \big ( \Vert E_1 \Vert ^2_{H^M_x} + \Vert n_1 \Vert ^2_{H^M_x} + (1 - \delta + \delta \sigma ) \Vert B_1 \Vert ^2_{H^M_x} + \Vert \nabla _x B_1 \Vert ^2_{H^M_x} \nonumber \\&\qquad + ( 1 - \delta ) \Vert \partial _t B_1 \Vert ^2_{H^M_x} + \delta \Vert \partial _t B_1 + B_1 \Vert ^2_{H^M_x} \big ) \nonumber \\&\qquad + ( \sigma - \delta ) \Vert \partial _t B_1 \Vert ^2_{H^M_x} + \delta \Vert \nabla _x B_1 \Vert ^2_{H^M_x} + \sigma \Vert E_1 \Vert ^2_{H^M_x} \nonumber \\&\qquad + \tfrac{1}{2} \sigma \Vert \nabla _x n_1 \Vert ^2_{H^M_x} + \tfrac{3}{2} \sigma \Vert n_1 \Vert ^2_{H^M_x} \nonumber \\&\quad \le C \big ( 1 + \mathcal {E}_{0,M+2} (t) \big ) \Vert u_1 \Vert ^2_{H^{M+1}_x} + C \big ( 1 + \mathcal {E}_{0,M+2} (t) \big )^2 \mathcal {D}_{0,M+2} (t) \nonumber \\&\qquad + C \mathcal {E}_{0,M+2} (t) \big ( \Vert n_1 \Vert ^2_{H^M_x} + \Vert \nabla _x n_1 \Vert ^2_{H^M_x} + \Vert \nabla _x B_1 \Vert ^2_{H^M_x} \big ) \,. \end{aligned}$$
(A.8)

By the monotonicity of \(\mathcal {E}_{0,s}(t)\) and \(\mathcal {D}_{0,s}(t)\) with respect to the index \(s \ge 0\), the inequality (3.20) reduces to

$$\begin{aligned} \Vert u_1 \Vert ^2_{H^{M+1}_x} (t) \le C \big ( 1 + \mathcal {E}_{0, M+2} (t) \big ) \mathcal {D}_{0,M+2} (t) \,, \end{aligned}$$
(A.9)

which, combined with the fact that \(\mathcal {E}_{0,M+2}(t) \le C \mathcal {E}_{0,M+2}^{\textrm{in}} \le C \lambda _0 (M+2)\) due to Lemma 3.4, enables us to get

$$\begin{aligned}&\tfrac{1}{2} \tfrac{\mathop {}\!\textrm{d}}{\mathop {}\!\textrm{d}t} \big ( \Vert E_1 \Vert ^2_{H^M_x} + \Vert n_1 \Vert ^2_{H^M_x} + ( 1 - \delta + \delta \sigma ) \Vert B_1 \Vert ^2_{H^M_x} + \Vert \nabla _x B_1 \Vert ^2_{H^M_x} \\&\qquad + ( 1 - \delta ) \Vert \partial _t B_1 \Vert ^2_{H^M_x} + \delta \Vert \partial _t B_1 + B_1 \Vert ^2_{H^M_x} \big ) \\&\qquad + ( \sigma - \delta ) \Vert \partial _t B_1 \Vert ^2_{H^M_x} + \delta \Vert \nabla _x B_1 \Vert ^2_{H^M_x} + \sigma \Vert E_1 \Vert ^2_{H^M_x} + \tfrac{1}{2} \sigma \Vert \nabla _x n_1 \Vert ^2_{H^M_x} + \tfrac{3}{2} \sigma \Vert n_1 \Vert ^2_{H^M_x} \\&\quad \le C ( 1 + \mathcal {E}_{0,M+2}^{\textrm{in}} )^2 \mathcal {D}_{0,M+2} (t) + C \mathcal {E}_{0,M+2}^{\textrm{in}} \big ( \Vert n_1 \Vert ^2_{H^M_x} + \Vert \nabla _x n_1 \Vert ^2_{H^M_x} + \Vert \nabla _x B_1 \Vert ^2_{H^M_x} \big ) \,. \end{aligned}$$

As a consequence, by the definitions of \(\mathcal {E}_{1,M}(t)\) and \(\mathcal {D}_{1,M}(t)\) in (3.17) and (3.18), respectively, it follows that

$$\begin{aligned} \tfrac{1}{2} \tfrac{\mathop {}\!\textrm{d}}{\mathop {}\!\textrm{d}t} \mathcal {E}_{1,M} (t) + 2 \mathcal {D}_{1,M} (t) \le C ( 1 + \mathcal {E}_{0,M+2}^{\textrm{in}} )^2 \mathcal {D}_{0,M+2} (t) + C \mathcal {E}_{0,M+2}^{\textrm{in}} \mathcal {D}_{1,M} (t) . \end{aligned}$$
(A.10)

Applying the energy inequality (3.14) with \(s=M+2\) in Lemma 3.4 yields

$$\begin{aligned} \tfrac{\mathop {}\!\textrm{d}}{\mathop {}\!\textrm{d}t}[ \mathcal {E}_{1, M} (t) + {\widetilde{C}}_M \mathcal {E}_{0, M+2} (t) ] + \left[ 2 \mathcal {D}_{1, M} (t) + \mathcal {D}_{0, M+2} (t) \right] \le C \mathcal {E}_{0,M+2}^{\textrm{in}} \mathcal {D}_{1,M} (t), \end{aligned}$$
(A.11)

with \({\widetilde{C}}_M= 1+ C ( 1 + \lambda _0 (M+2))^2 \ge 1\). Therefore, by choosing a small positive constant \(\lambda _1(M+2) \in ( 0, \lambda _0(M+2)] \) such that if \(\mathcal {E}_{0,M+2}^{\textrm{in}} \le \lambda _1(M+2)\), then \(C \mathcal {E}_{0,M+2}^{\textrm{in}} \le 1\), the above inequality will conclude (3.22). The bound (3.23) also follows immediately. The proof of Lemma 3.5 is completed. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, N., Luo, YL. & Zhang, TF. Hydrodynamic Limit of the Incompressible Navier–Stokes–Fourier–Maxwell System with Ohm’s Law from the Vlasov–Maxwell–Boltzmann System: Hilbert Expansion Approach. Arch Rational Mech Anal 247, 55 (2023). https://doi.org/10.1007/s00205-023-01888-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00205-023-01888-3

Navigation