Skip to main content
Log in

Intrinsic Geometry and Analysis of Diffusion Processes and L -Variational Problems

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The aim of this paper is twofold. First, we obtain a better understanding of the intrinsic distance of diffusion processes. Precisely, (a) for all n ≧ 1, the diffusion matrix A is weak upper semicontinuous on Ω if and only if the intrinsic differential and the local intrinsic distance structures coincide; (b) if n = 1, or if n ≧ 2 and A is weak upper semicontinuous on Ω, the intrinsic distance and differential structures always coincide; (c) if n ≧ 2 and A fails to be weak upper semicontinuous on Ω, the (non-)coincidence of the intrinsic distance and differential structures depend on the geometry of the non-weak-upper-semicontinuity set of A. Second, for an arbitrary diffusion matrix A, we show that the intrinsic distance completely determines the absolute minimizer of the corresponding L -variational problem, and then obtain the existence and uniqueness for given boundary data. We also give an example of a diffusion matrix A for which there is an absolute minimizer that is not of class C 1. When A is continuous, we also obtain the linear approximation property of the absolute minimizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armstrong S.N., Smart C.K.: An easy proof of Jensen’s theorem on the uniqueness of infinity harmonic functions. Calc. Var. Partial Differ. Equ. 37, 381–384 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aronsson G.: Minimization problems for the functional sup x F(x, f(x), f′ (x)). Ark. Mat. 6, 33–53 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aronsson G.: Minimization problems for the functional sup x F(x, f(x), f′ (x)). II. Ark. Mat. 6, 409–431 (1966)

    Article  MathSciNet  Google Scholar 

  4. Aronsson G.: Extension of functions satisfying Lipschitz conditions. Ark. Mat. 6, 551–561 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  5. Aronsson G.: Minimization problems for the functional sup x F(x, f(x), f′ (x)). III. Ark. Mat. 7, 509–512 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  6. Aronsson G., Crandall M.G., Juutinen P.: A tour of the theory of absolutely minimizing functions. Bull. Am. Math. Soc. (N. S.) 41, 439–505 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Champion T., Pascale L.: Principle of comparison with distance functions for absolute minimzer. J. Convex Anal. 14, 515–541 (2007)

    MATH  MathSciNet  Google Scholar 

  8. Champion T., De Pascale L., Prinari F.: Γ-Convergence and absolute minimizers for supremal functionals. ESAIM Control Optim. Calc. Var. 10, 14–27 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cheeger J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 428–517 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Crandall M.G., Evans L.C., Gariepy R.F.: Optimal Lipschitz extensions and the infinity Laplacian. Calc. Var. Partial Differ. Equ. 13, 123–139 (2001)

    MATH  MathSciNet  Google Scholar 

  11. Dragoni F., Manfredi J.J., Vittone D.: Weak Fubini property and infinity harmonic functions in Riemannian and sub-Riemannian manifolds. Trans. Am. Math. Soc. 365, 837–859 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Evans L.C., Savin O.: C 1,α regularity for infinity harmonic functions in two dimensions. Calc. Var. Partial Differ. Equ. 32, 325–347 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Evans L.C., Smart C.K.: Everywhere differentiability of infinity harmonic functions. Calc. Var. Partial Differ. Equ. 42, 289–299 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fukushima, M., Ōshima, Y., Takeda, M.: Dirichlet forms and symmetric Markov processes. In: de Gruyter Studies in Mathematics, vol. 19. Walter de Gruyter & Co., Berlin (1994)

  15. Garroni A., Ponsiglione M., Prinari F.: From 1-homogeneous supremum functional to difference quotients: relaxation and Γ-convergence. Calc. Var. Partial Differ. Equ. 27, 397–420 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gariepy R., Wang C., Yu Y.: Generalized cone comparison principle for viscosity solutions of the Aronsson equation and absolute minimizers. Commun. Partial Differ. Equ. 31, 1027–1046 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jensen R.: Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient. Arch. Ration. Mech. Anal. 123, 51–74 (1993)

    Article  MATH  Google Scholar 

  18. Juutinen P.: Absolutely minimizing Lipschitz extensions on a metric space. Ann. Acad. Sci. Fenn. Math. 27, 57–67 (2002)

    MATH  MathSciNet  Google Scholar 

  19. Juutinen P., Shanmugalingam N.: Equivalence of AMLE, strong AMLE, and comparison with cones in metric measure space. Math. Nachr. 279, 1083–1098 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Koskela P., Zhou Y.: Geometry and analysis of Dirichlet forms. Adv. Math. 231, 2755–2801 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Koskela P., Shanmugalingam N., Zhou Y.: L -variational problem on metric measure spaces. Math. Res. Lett. 19, 1263–1275 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Norris J.R.: Heat kernel asymptotics and the distance function in Lipschitz Riemannian manifolds. Acta Math. 179, 79–103 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Peres Y., Schramm O., Sheffield S., Wilson D.B.: Tug-of-war and the infinity Laplacian. J. Am. Math. Soc. 22, 167–210 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Savin O.: C 1 regularity for infinity harmonic functions in two dimensions. Arch. Ration. Mech. Anal. 176, 351–361 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Stollmann P.: A dual characterization of length spaces with application to Dirichlet metric spaces. Stud. Math. 198, 221–233 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sturm K.-T.: Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and L p-Liouville properties. J. Reine Angew. Math. 456, 173–196 (1994)

    MATH  MathSciNet  Google Scholar 

  27. Sturm K.-T.: Is a diffusion process determined by its intrinsic metric?. Chaos Solitons Fractals 8, 1855–1860 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Wang C., Yu Y.: C 1-regularity of the Aronsson equation in R 2. Ann. Inst. H. Poincaré Anal. Non Linéaire 25, 659–678 (2008)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Zhou.

Additional information

Communicated by S. Müller

Pekka Koskela was supported by the Academy of Finland Grant 131477. Nageswari Shanmugalingam was partially supported by Grant #200474 from the Simons Foundation and by NSF Grant # DMS-1200915. Yuan Zhou (corresponding author) was supported by New Teachers’ Fund for Doctor Stations (# 20121102120031) and Program for New Century Excellent Talents in University (# NCET-11-0782) of Ministry of Education of China, and National Natural Science Foundation of China (# 11201015).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koskela, P., Shanmugalingam, N. & Zhou, Y. Intrinsic Geometry and Analysis of Diffusion Processes and L -Variational Problems. Arch Rational Mech Anal 214, 99–142 (2014). https://doi.org/10.1007/s00205-014-0755-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-014-0755-8

Keywords

Navigation