Skip to main content
Log in

On homogeneous arcs and linear codes over finite chain rings

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

We consider projective Hjelmslev geometries over finite chain rings of length 2 with residue field of order q. In these geometries we introduce and investigate the so-called homogeneous arcs defined as multisets of points with respect to a special weight function. These arcs are associated with linearly representable q-ary codes. We establish a relation between the parameters of a linearly representable code and the parameters of the associated arc. We prove an inequality for the largest homogeneous weight of an arc of given size N. We consider the \(\tau \)-dual of a homogeneous arc and give an explicit formula for the homogeneous weights of the hyperplanes with respect to the dual arc. We prove that if a homogeneous arc is of constant weight, this weight is forced to be zero and the arc is a sum of neighbour classes of points. We prove various numerical conditions on the parameters of homogeneous two-weight arcs, as well as an interesting identity involving the parameters of a projective homogeneous two-weight arc and its dual, which isturns out to be also a homogeneous two-weight arc. Finally, we present examples of two-weight homogeneous arcs some of which are new.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. In [10, 11] the term “fat” was used in place of “regular”; the latter has been adopted in [3] and used since then.

  2. Except for the trivial case of a torsion module M, these codes are not projective either.

References

  1. Artmann, B.: Hjelmslev–Ebenen mit verfeinerten Nachbarschaftsrelationen. Math. Z. 112, 163–180 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bonisoli, A.: Every equidistant linear code is a sequence of dual Hamming codes. Ars Comb. 18, 181–186 (1984)

    MathSciNet  MATH  Google Scholar 

  3. Byrne, E., Greferath, M., Honold, T.: Ring geometries, two-weight codes, and strongly regular graphs. Des. Codes Cryptogr. 48(1), 1–16 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Calderbank, R., Kantor, W.: The geometry of two-weight codes. Bull. Lond. Math. Soc. 18, 97–122 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carlet, C.: One-weight \({\mathbb{Z}}_4\)-linear codes. In: Buchmann, J., Hohold, T., Stichtenoth, H., Tapia-Recillas, H. (eds.) Coding Theory and Related Areas, pp. 57–72. Springer, Berlin (2000)

    Chapter  Google Scholar 

  6. Constantinescu, I., Heise, W.: A metric for codes over residue class rings. Probl. Inform. Transm. 33(3), 208–213 (1997)

    MathSciNet  MATH  Google Scholar 

  7. Honold, T.: Two-intersection sets in projective Hjelmslev spaces. In: Proceedings of the 19th International Symposium on Math Theory of Networks and Systems, Budapest, 5–9 July, pp. 1807–1813 (1910). ISBN 978-963-311-370-7

  8. Honold, T., Kiermaier, M., Landjev, I.: New arcs of maximal size in projective Hjelmslev planes of order nine. Compt. Rend. Acad. Bulgare Sci. 63(2), 171–180 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Honold, T., Landjev, I.: The dual construction for arcs in projective Hjelmslev planes. Adv. Math. Commun. 5(1), 11–21 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Honold, T., Landjev, I.: Linearly representable codes over chain rings. Abhandlungen aus dem mathematischen Seminar der Universität Hamburg 69, 187–203 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Honold, T., Landjev, I.: Linear codes over finite chain rings. Electron. J. Comb. 7, R11 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Honold, T., Landjev, I.: On maximal arcs in projective Hjelmslev planes over chain rings of even characteristic. Finite Fields Appl. 11(2), 292–304 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Honold, T., Landjev, I.: Linear codes over finite chain rings and projective Hjelmslev geometries. In: Solé, P. (ed.) Codes Over Rings, Volume 6 of Series on Coding Theory and Cryptology. World Scientific, Singapore (2009)

    MATH  Google Scholar 

  14. Honold, T., Landjev, I.: Codes over rings and ring geometries. In: De Beule, J., Storme, L. (eds.) Current Research Topics in Galois Geometries (Chapter 7), pp. 161–186. Nova Science Publishers, New York (2012)

    MATH  Google Scholar 

  15. Honold, T., Nechaev, A.: Weighted modules and representations of codes. Probl. Inform. Transm. 35(3), 205–223 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Kleinfeld, E.: Finite Hjelmslev planes. Ill. J. Math. 3, 403–407 (1959)

    MathSciNet  MATH  Google Scholar 

  17. Klingenberg, W.: Projektive und affine Ebenen mit Nachbarelementen. Math. Z. 60, 384–406 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  18. Klingenberg, W.: Desarguessche Ebenen mit Nachbarelementen. Abhandlungen aus dem mathematischen Seminar der Universität Hamburg 20, 97–111 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kreuzer, A.: A system of axioms for projective Hjelmslev spaces. J. Geom. 40, 125–147 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Landjev, I., Vandendriessche, P.: On the rank of incidence matrices in projective Hjelmslev spaces. Des. Codes Cryptogr. 73, 615–623 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. McDonald, B.R.: Finite Rings with Identity. Marcel Dekker, New York (1974)

    MATH  Google Scholar 

  22. Nechaev, A.A.: Finite principal ideal rings. Russ. Acad. Sci. Sbornik Math. 20, 364–382 (1973)

    Article  Google Scholar 

  23. Nechaev, A.A.: Finite rings with applications. In: Hazewinkel, M. (ed.) Handbook of Algebra, vol. 5, pp. 213–320. Elsevier North-Holland, Amsterdam (2008)

    Google Scholar 

  24. Semakov, N.V., Zinoviev, V.A., Zaitsev, V.G.: Class of equidistant codes. Probl. Inf. Transm. 5(1969), 84–87 (1969)

    MathSciNet  MATH  Google Scholar 

  25. Wood, J.: The structure of linear codes of constant weight. Trans. Am. Math. Soc. 354(3), 1007–1026 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of the first author was supported by the National Natural Science Foundation of China under Grant 61571006. The work of the second author was supported by the Bulgarian National Science Research Fund under Contract K\(\varPi \)-06-32/6—07.12.2019. The authors thank the annonimous referees for their careful reading and the valuable comments that helped to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Landjev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Honold, T., Landjev, I. On homogeneous arcs and linear codes over finite chain rings. AAECC 34, 359–375 (2023). https://doi.org/10.1007/s00200-021-00501-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-021-00501-y

Keywords

Mathematics Subject Classification

Navigation